
Google Code Jam '21 Qualification Round Problem C -
Reversort Engineering

Note: The main parts of the statements of the problems "Reversort" and "Reversort Engineering" are identical, except for the
last paragraph. The problems can otherwise be solved independently.

Reversort is an algorithm to sort a list of distinct integers in increasing order. The algorithm is based on the "Reverse"
operation. Each application of this operation reverses the order of some contiguous part of the list.

The pseudocode of the algorithm is the following:

Reversort(L):
 for i := 1 to length(L) - 1
 j := position with the minimum value in L between i and length(L), inclusive
 Reverse(L[i..j])

After iterations, the positions of the list contain the smallest elements of L, in increasing
order. During the iteration, the process reverses the sublist going from the position to the current position of the

 minimum element. That makes the minimum element end up in the position.

For example, for a list with 4 elements, the algorithm would perform 3 iterations. Here is how it would process
:

1. ,
2. ,
3. ,

The most expensive part of executing the algorithm on our architecture is the Reverse operation. Therefore, our
measure for the cost of each iteration is simply the length of the sublist passed to Reverse, that is, the value .
The cost of the whole algorithm is the sum of the costs of each iteration.

In the example above, the iterations cost 3, 1, and 2, in that order, for a total of 6.

You are given a size and a cost . Find a list of distinct integers between and such that the cost of applying
Reversort to it is exactly , or say that there is no such list.

Input Specification

The first line of the input gives the number of test cases, . lines follow. Each line describes a test case with two
integers and , the size of the wanted list and the desired cost, respectively.

Output Specification

Time limit: 10.0s Memory limit: 1G

i − 1 1, 2, … , i − 1 i − 1

ith ith

ith ith ith

L = [4, 2, 1, 3]

i = 1 j = 3⟶ L = [1, 2, 4, 3]

i = 2 j = 2⟶ L = [1, 2, 4, 3]

i = 3 j = 4⟶ L = [1, 2, 3, 4]

j − i + 1

N C N 1 N

C

T T

N C

For each test case, if there is no list of size such that applying Reversort to it costs exactly , output one line
containing Case #x: IMPOSSIBLE , where is the test case number (starting from 1). Otherwise, output one line
containing Case #x: y y ... y , where is the test case number (starting from 1) and each is a distinct integer
between and , representing the element of one such possible list.

If there are multiple solutions, you may output any one of them.

Limits

Time limit: 10 seconds.

Memory limit: 1 GB.

.

.

Test Set 1

.

Test Set 2

.

Sample Input

5
4 6
2 1
7 12
7 2
2 1000

Sample Output

Case #1: 4 2 1 3
Case #2: 1 2
Case #3: 7 6 5 4 3 2 1
Case #4: IMPOSSIBLE
Case #5: IMPOSSIBLE

Sample Case #1 is described in the statement above.

N C

x

1 2 N x yi

1 N ith

1 ≤ T ≤ 100

1 ≤ C ≤ 1 000

2 ≤ N ≤ 7

2 ≤ N ≤ 100

In Sample Case #2, the algorithm runs for only one iteration on the proposed output. In that iteration, reverse is applied
to a sublist of size 1, therefore, its cost is 1.

In Sample Case #3, the first iteration reverses the full list, for a cost of 7. After that, the list is already sorted, but there
are 5 more iterations, each of which contributes a cost of 1. Another valid output would be 7 5 4 3 2 1 6 . For that
output, the first iteration has a cost of 6, the last one has a cost of 2, and all others have a cost of 1.

In Sample Case #4, Reversort will necessarily perform 6 iterations, each of which will have a cost of at least 1, so there is
no way the total cost can be as low as required.

