
A Floyd-Warshall Problem

Here is an incorrect implementation of Floyd-Warshall.

floyd_warshall(dist, n):
 # Assume dist[i][j] is positive infinity if there is no edge between them
 for i ranging from 1 to n:
 for j ranging from 1 to n:
 for k ranging from 1 to n:
 dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])

Here is an attempt at patching it.

floyd_warshall_patch1(dist, n, k):
 # dist[i][i] is zero
 # dist[i][j] is otherwise the weighted of the directed edge from i to j if it exists
 # dist[i][j] is otherwise positive infinity
 for i ranging from 1 to k:
 floyd_warshall(dist, n)

Here is another attempt at patching it.

floyd_warshall_patch2(dist, n)
 # dist[i][i] is zero
 # dist[i][j] is otherwise the weighted of the directed edge from i to j if it exists
 # dist[i][j] is otherwise positive infinity
 for i ranging from 1 to n:
 for j ranging from 1 to n:
 for k ranging from 1 to n:
 dist[j][k] = min(dist[j][k], dist[j][i] + dist[i][k])

Your job is to construct a directed graph with vertices and edges such that, given a parameter , the output of
floyd_warshall_patch1 when given matches the output of floyd_warshall_patch2 on the given graph, but

the output of floyd_warshall_patch1 when given does not.

Input Specification

The first line contains three space-separated integers, , , and .

Time limit: 4.5s Memory limit: 1G

N M K

K

K − 1

N M K

You may assume , , and .

Output Specification

If no such directed graph exists, output NO on a single line.

Otherwise, output lines. The first line must be YES .

Each line after that should contain three space-separated positive integers. The first two, and , should indicate the
presence of a directed edge going from to . Only one such edge may exist in your graph. Furthermore, and

. The third integer is the weight of your edge. The weight must be a positive integer not exceeding .

Note: Depending on how easy this original task is, additional constraints may be added.

Sample Input 1

2 1 1

Sample Output 1

NO

2 ≤ N ≤ 100 N − 1 ≤ M ≤ N
2 −N 1 ≤ K ≤ 3

M + 1

A B

A B A ≠ B

1 ≤ A,B ≤ N 109

