
A Floyd-Warshall Problem

Here is an incorrect implementation of Floyd-Warshall.

floyd_warshall(dist, n):
  # Assume dist[i][j] is positive infinity if there is no edge between them
  for i ranging from 1 to n:
    for j ranging from 1 to n:
      for k ranging from 1 to n:
        dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])

Here is an attempt at patching it.

floyd_warshall_patch1(dist, n, k):
  # dist[i][i] is zero
  # dist[i][j] is otherwise the weighted of the directed edge from i to j if it exists
  # dist[i][j] is otherwise positive infinity
  for i ranging from 1 to k:
    floyd_warshall(dist, n)

Here is another attempt at patching it.

floyd_warshall_patch2(dist, n)
  # dist[i][i] is zero
  # dist[i][j] is otherwise the weighted of the directed edge from i to j if it exists
  # dist[i][j] is otherwise positive infinity
  for i ranging from 1 to n:
    for j ranging from 1 to n:
      for k ranging from 1 to n:
        dist[j][k] = min(dist[j][k], dist[j][i] + dist[i][k])

Your job is to construct a directed graph with  vertices and  edges such that, given a parameter , the output of
floyd_warshall_patch1  when given  matches the output of floyd_warshall_patch2  on the given graph, but

the output of floyd_warshall_patch1  when given  does not.

Input Specification

The first line contains three space-separated integers, , , and .

Time limit: 4.5s  Memory limit: 1G
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You may assume , , and .

Output Specification

If no such directed graph exists, output NO  on a single line.

Otherwise, output  lines. The first line must be YES .

Each line after that should contain three space-separated positive integers. The first two,  and , should indicate the
presence of a directed edge going from  to . Only one such edge may exist in your graph. Furthermore,  and

. The third integer is the weight of your edge. The weight must be a positive integer not exceeding .

Note: Depending on how easy this original task is, additional constraints may be added.

Sample Input 1

2 1 1

Sample Output 1

NO

2 ≤ N ≤ 100 N − 1 ≤ M ≤ N
2 −N 1 ≤ K ≤ 3
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1 ≤ A,B ≤ N 109


