Time limit: 13.0s Memory limit: 256M

The factorial of a number N, denoted as N!, is equal to the product of all natural numbers up to and including N. For example,

- 1! = 1
- $2! = 1 \times 2 = 2$
- $3! = 1 \times 2 \times 3 = 6$
- $4! = 1 \times 2 \times 3 \times 4 = 24$

Given two numbers K and M, what is the smallest value of N such that N! has at least M factors of K (that is, K^M divides evenly into N!)?

Input Specification

The standard input contains 10 datasets. Each dataset contains two integers K, M ($2 \le K \le 1\,000\,000, 1 \le M \le 1\,000\,000$).

For the first 4 cases, K is prime and $K imes M \leq 1\,000.$

For the first 7 cases, $K imes M \leq 1\,000\,000.$

Output Specification

For each dataset, output the minimum value of N such that N! has at least M factors of K.

Sample Input (Five Datasets Shown)

22			
2 3			
3 1			
4 2 10 10			
10 10			

Sample Output

4			
4			
3			
6			
45			

Educational Computing Organization of Ontario - statements, test data and other materials can be found at ecoocs.org