Time limit: 2.5s Memory limit: 256M

Any natural number N > 4 can be expressed as the sum of 1, 2 or 3 odd primes. If N itself is a prime, only one number is required.

However, because there are so many solutions for large composite N, it is your task to find the solution N = p + qwhere $p \le q$ are prime, and where p is as large as possible, or, if N cannot be expressed as the sum of two primes, find the solution N = p + q + r where $p \le q \le r$ are prime and where p is as large as possible, followed by where q is as large as possible.

Examples

10	49		
10 = 3 + 7	49 = 13 + 13 + 23		
10 = 5 + 5	49 = 13 + 17 + 19		

5 is larger than 3 and so, the required solution is 10 = 5 + 5.

In this case, 17 is larger than 13, and so the required solution is 49 = 13 + 17 + 19.

The input contains 5 numbers on 5 separate lines. These numbers are less than $10\,000\,000$ and larger than 4. Write a program that will find the sum of primes for each of these numbers as described, and display the result as is shown in the sample below.

Sample Input

40			
49			
152029			
90118			
4565973			
705510			

Sample Output

49 = 13 + 17 + 19 152029 = 152029 90118 = 44987 + 45131 4565973 = 1521991 + 1521991 + 1521991 705510 = 352753 + 352757