Time limit: 1.0s Memory limit: 1G

There are N blocks, numbered 1, 2, ..., N. For each $i \ (1 \le i \le N)$, Block i has a weight of w_{i} , a solidness of s_{i} , and a value of v_{i} .

Taro has decided to build a tower by choosing some of the N blocks and stacking them vertically in some order. Here, the tower must satisfy the following condition:

• For each Block *i* contained in the tower, the sum of the weights of the blocks stacked above it is not greater than *s_i*.

Find the maximum possible sum of the values of the blocks contained in the tower.

Constraints

- All values in input are integers.
- $1 \leq N \leq 10^3$
- $1 \le w_i, s_i \le 10^4$
- $1 \leq v_i \leq 10^9$

Input Specification

The first line will contain the integer N.

The next N lines will each contain three integers, w_i, s_i, v_i .

Output Specification

Print the maximum possible sum of the values of the blocks contained in the tower.

Sample Input 1

3		
2 2 20		
2 1 30		
3 1 40		

Sample Output 1

Explanation For Sample 1

If Blocks 2, 1 are stacked in this order from top to bottom, this tower will satisfy the condition, with the total value of 30 + 20 = 50.

Sample Input 2

4		
1 2 10		
3 1 10		
2 4 10		
1 6 10		

Sample Output 2

40

Explanation For Sample 2

Blocks 1, 2, 3, 4 should be stacked in this order from top to bottom.

Sample Input 3

Sample Output 3

5000000000

Explanation For Sample 3

Sample Input 4

8		
957		
627		
5 7 3		
788		
196		
3 3 3		
4 1 7		
4 5 5		

Sample Output 4

22

Explanation For Sample 4

We should, for example, stack Blocks 5, 6, 8, 4 in this order from top to bottom.