Time limit: 1.0s Memory limit: 1G

Consider a string of length N consisting of 0 and 1. The score for the string is calculated as follows:

• For each i $(1 \le i \le M)$, a_i is added to the score if the string contains 1 at least once between the l_i -th and r_i -th characters (inclusive).

Find the maximum possible score of a string.

Constraints

- All values in input are integers.
- $1 \leq N \leq 2 imes 10^5$
- $1 \leq M \leq 2 imes 10^5$
- $1 \leq l_i \leq r_i \leq N$
- $|a_i| \leq 10^9$

Input Specification

The first line will contain two integers N and M.

The next M lines will each contain three integers, l_i, r_i, a_i .

Output Specification

Print the maximum possible score of a string.

Sample Input 1

Sample Output 1

20

Explanation For Sample 1

The score for 10001 is $a_1 + a_3 = 10 + 10 = 20$.

Sample Input 2

3 4			
1 3 100			
1 1 -10			
2 2 -20			
3 3 -30			

Sample Output 2

90

Explanation For Sample 2

The score for 100 is $a_1 + a_2 = 100 + (-10) = 90.$

Sample Input 3

1 1 1 1 -10

Sample Output 3

0

Explanation For Sample 3

The score for \bigcirc is 0.

Sample Input 4

- 15
- 1 1 100000000
- 1 1 100000000
- 1 1 100000000
- 1 1 100000000
- 1 1 100000000

Sample Output 4

5000000000

Explanation For Sample 4

The answer may not fit into a 32-bit integer type.

Sample Input 5

68		
5 5 3		
1 1 10		
1 6 -8		
3 6 5		
3 4 9		
5 5 -2		
1 3 -6		
4 6 -7		

Sample Output 5

10

Explanation For Sample 5

For example, the score for 101000 is $a_2 + a_3 + a_4 + a_5 + a_7 = 10 + (-8) + 5 + 9 + (-6) = 10$.