Time limit: 0.6s Memory limit: 1G

There is a simple directed graph G with N vertices, numbered $1, 2, \ldots, N$.

For each i and j $(1 \le i, j \le N)$, you are given an integer $a_{i,j}$ that represents whether there is a directed edge from Vertex i to j. If $a_{i,j} = 1$, there is a directed edge from Vertex i to j; if $a_{i,j} = 0$, there is not.

Find the number of different directed paths of length K in G, modulo $10^9 + 7$. We will also count a path that traverses the same edge multiple times.

Constraints

- All values in input are integers.
- $1 \le N \le 50$
- $1 \leq K \leq 10^{18}$
- $a_{i,j}$ is 0 or 1.
- $a_{i,i}=0$

Input Specification

The first line will contain 2 space separated integers N, K.

The next N lines will each contain N space separated integers, $a_{i,j}$.

Output Specification

Print the number of different directed paths of length K in G, modulo $10^9 + 7$.

Sample Input 1

4	2		
0	1	0	0
0	0	1	1
0	0	0	1
1	0	0	0

Sample Output 1

Explanation For Sample 1

G is drawn in the figure below:

There are six directed paths of length 2:

- $1 \rightarrow 2 \rightarrow 3$
- $1 \rightarrow 2 \rightarrow 4$
- $2 \rightarrow 3 \rightarrow 4$
- $2 \rightarrow 4 \rightarrow 1$
- $3 \rightarrow 4 \rightarrow 1$
- $4 \rightarrow 1 \rightarrow 2$

Sample Input 2

3 3			
010			
101			
000			

Sample Output 2

3

Explanation For Sample 2

G is drawn in the figure below:

There are three directed paths of length 3:

- $1 \rightarrow 2 \rightarrow 1 \rightarrow 2$
- $2 \rightarrow 1 \rightarrow 2 \rightarrow 1$
- $2 \rightarrow 1 \rightarrow 2 \rightarrow 3$

Sample Input 3

Sample Output 3

1

Explanation For Sample 3

 ${\boldsymbol{G}}$ is drawn in the figure below:

There is one directed path of length 2:

• $4 \rightarrow 5 \rightarrow 6$

Sample Input 4

1 1		
0		

Sample Output 4

Sample Output 5

957538352

Explanation For Sample 5

Be sure to print the count modulo 10^9+7 .

0