Time limit: 1.4s Memory limit: 1G

There are N men and N women, both numbered $1, 2, \ldots, N$.

For each i, j $(1 \le i, j \le N)$, the compatibility of Man i and Woman j is given as an integer $a_{i,j}$. If $a_{i,j} = 1$, Man i and Woman j are compatible; if $a_{i,j} = 0$, they are not.

Taro is trying to make N pairs, each consisting of a man and a woman who are compatible. Here, each man and each woman must belong to exactly one pair.

Find the number of ways in which Taro can make N pairs, modulo $10^9 + 7$.

Constraints

- All values in input are integers.
- $1 \leq N \leq 21$
- $a_{i,j}$ is 0 or 1.

Input Specification

The first line will contain the integer N.

The next N lines will each contain N integers, $a_{i,j}$.

Output Specification

Print the number of ways in which Taro can make N pairs, modulo $10^9 + 7$.

Sample Input 1

3		
0	1	1
1	0	1
1	1	1

Sample Output 1

Explanation For Sample 1

There are three ways to make pairs, as follows ((i, j) denotes a pair of Man *i* and Woman *j*):

- (1,2), (2,1), (3,3)
- (1,2), (2,3), (3,1)
- (1,3), (2,1), (3,2)

Sample Input 2

Sample Output 2

1

Explanation For Sample 2

There is one way to make pairs, as follows:

• (1,2), (2,4), (3,1), (4,3)

Sample Input 3

1
٥

Sample Output 3

0

Sample Input 4

Sample Output 4

Explanation For Sample 4

Be sure to print the number modulo $10^9 + 7$.