Time limit: 1.0s Memory limit: 1G

There is a directed graph G with N vertices and M edges. The vertices are numbered 1, 2, ..., N, and for each i $(1 \le i \le M)$, the i-th directed edge goes from Vertex x_i to y_i . G does not contain directed cycles.

Find the length of the longest directed path in G. Here, the length of a directed path is the number of edges in it.

Constraints

- All values in input are integers.
- $2 \leq N \leq 10^5$
- $1 \leq M \leq 10^5$
- $1 \leq x_i, y_i \leq N$
- All pairs (x_i, y_i) are distinct.
- G does not contain directed cycles.

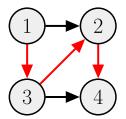
Input Specification

The first line will contain 2 space separated integers N, M.

The next M lines will contain 2 space separated integers, x_i, y_i .

Output Specification

Print the length of the longest directed path in G.


Sample Input 1

4 5 1 2			
12			
1 3			
32			
2 4			
2 4 3 4			

Sample Output 1

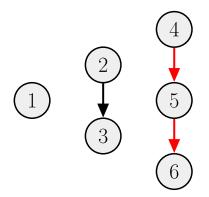
Explanation For Sample 1

The red directed path in the following figure is the longest:

Sample Input 2

63 23

45


56

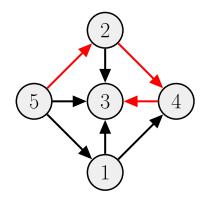
Sample Output 2

2

Explanation For Sample 2

The red directed path in the following figure is the longest:

Sample Input 3


58			
5 3			
2 3			
2 4			
52			
5 1			
14			
4 3			
1 3			

Sample Output 3

3

Explanation For Sample 3

The red directed path in the following figure is one of the longest:

