Educational DP Contest AtCoder B - Frog 2

Time limit: 1.0s **Memory limit:** 1G

There are N stones, numbered $1,2,\ldots,N$. For each i $(1\leq i\leq N)$, the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to one of the following: Stone $i+1, i+2, \ldots, i+K$. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

Constraints

- All values in input are integers.
- $2 \le N \le 10^5$
- $1 \le K \le 100$
- $1 \le h_i \le 10^4$

Input Specification

The first line of input will contain 2 integers N and K.

The second line of input will contain N spaced integers, h_i , the height of stone i.

Output Specification

Output a single integer, the minimum possible total cost incurred.

Sample Input 1

5 3 10 30 40 50 20

Sample Output 1

30

Sample Input 2

3 1 10 20 10

Sample Output 2

20

Sample Input 3

2 100 10 10

Sample Output 3

0

Sample Input 4

10 4 40 10 20 70 80 10 20 70 80 60

Sample Output 4

40

Sample Explanations

For the first sample, if we follow the path $1 \to 2 \to 5$, the total cost incurred would be |10 - 30| + |30 - 20| = 30.

For the second sample, if we follow the path $1 \to 2 \to 3$, the total cost incurred would be |10 - 20| + |20 - 10| = 20.

For the third sample, if we follow the path $1 \to 2$, the total cost incurred would be |10 - 10| = 0.

For the fourth sample, if we follow the path $1 \to 4 \to 8 \to 10$, the total cost incurred would be |40-70|+|70-70|+|70-60|=40.