Time limit: 2.0s Memory limit: 256M

Subaru and Rem are hunting down the white whale. They currently have a list of N locations where the white whale has been rumoured to appear. There are N - 1 roads that connect every location to every other location. The *i*th of these typically sees t_i travelers per day.

If the white whale travels along these roads, it continually travels along a single path that sees a total of K travelers per day, picked uniformly at random from all such paths. Doing so means that it will pass all locations that are on this path. Thus Rem asks Subaru N questions: if we wait at node 1, 2, ..., N, what is the probability we will encounter the whale?

Constraints

For all subtasks:

 $0 \leq t_i \leq 1\,000\,000$

Subtask 1 [9%]

 $1 \leq N \leq 100$

 $1 \leq K \leq 100$

The network of roads forms the simplest possible line: For $1 \le i < N$, road i connects locations i and i + 1.

Subtask 2 [12%]

 $1 \leq N \leq 1\,000$

 $1 \leq K \leq 1\,000\,000$

Subtask 3 [22%]

 $1 \leq N \leq 200\,000$

 $1 \leq K \leq 100$

Subtask 4 [57%]

 $1 \leq N \leq 200\,000$

 $1 \leq K \leq 1\,000\,000$

Input Specification

The first line of input will contain two space-separated integers, N and K.

The next N-1 lines will each contain 3 integers: a_i, b_i, t_i , indicating there is a road between locations a_i and b_i , with t_i travelers per day.

Output Specification

You should output N lines, where each is the probability Rem and Subaru encounter the white whale, expressed as a fraction in lowest terms.

Sample Input

1 3 3 2 3 3 3 4 1 4 5 3	54		
2 3 3 3 4 1 4 5 3	1 3 3		
3 4 1 4 5 3	2 3 3		
4 5 3	3 4 1		
	4 5 3		

Sample Output

Explanation for Sample Output

The possible paths are:

- $2 \rightarrow 3 \rightarrow 4$
- $1 \rightarrow 3 \rightarrow 4$
- 5
 ightarrow 4
 ightarrow 3

Locations 3 and 4 appear on all 3 paths, but locations 1, 2, and 5 only appear on a single path each.