DMOPC '21 Contest 7 P6 - Rainbow Subgraphs

Time limit: 2.0s **Memory limit:** 256M

You are given positive integers N, M, and MOD.

Let V be the set of points (x,y) in the plane such that x and y are integers, $y \ge 0$, and $N^2 \le x^2 + y^2 < (N+M)^2$. Let E be a set of undirected edges between elements of V, where $(u,v) \in E$ if point u and point v are distance 1 apart.

Calculate the number of subgraphs of the graph G=(V,E), modulo MOD. That is, the number of pairs (V',E') such that $V'\subseteq V$, $E'\subseteq E$, and $u,v\in V'$ for all $(u,v)\in E'$. Note that V' and/or E' are allowed to be empty or equal to V or E respectively.

Constraints

- $1 \le N \le 300$
- $1 \leq M \leq 16$
- $10^8 \le MOD \le 10^9$

Subtask 1 [20%]

- $1 \le N \le 10$
- 1 < M < 5

Subtask 2 [20%]

- $1 \leq N \leq 35$
- $1 \leq M \leq 5$

Subtask 3 [20%]

- $1 \leq N \leq 100$
- $1 \le M \le 5$

Subtask 4 [20%]

- $1 \leq N \leq 200$
- $1 \leq M \leq 10$

Subtask 5 [20%]

No additional constraints.

Input Specification

The first and only line of input contains three space-separated integers: N, M, and MOD.

Output Specification

Output the number of subgraphs modulo MOD.

Sample Input 1

1 1 998244352

Sample Output 1

89

Explanation for Sample 1

The graph G looks like the following:

Sample Input 2

2 2 998244352

Sample Output 2

41377047

Explanation for Sample 2

The graph ${\cal G}$ looks like the following:

Sample Input 3

31 4 159265358

Sample Output 3

54714600