DMOPC '19 Contest 6 P6 - Math is Difficult

Time limit: 3.0s Memory limit: 256M

Tzovex is currently taking a course in real analysis. Unfortunately for him and his class, they are having trouble following the lectures and are now struggling with a particular homework assignment that is due in D + 1 days. The homework assignment consists of M questions, the *i*th of which has a value of v_i . Including himself, Tzovex's class consists of N students, the *j*th of which having solved the first a_j problems while being unable to solve the rest. However, the professor is willing to help out students in extra classes, each of which is dedicated to a single problem. In particular, help will be available for the *i*th problem between l_i and r_i (inclusive) days from today. The *j*th student only has time for one extra class, and he can only attend it if it happens in exactly d_j days. The professor also has a unique way of grading assignments. Rather than giving the students marks, he instead gives them penalties. Going from the first to the last problem, the *k*th problem that a student did not solve will earn them *k* times the value of the problem in penalties. Assuming that no student will solve any extra problems on their own, determine the minimum possible penalty that each of the N students can achieve.

Input Specification

The first line contains three space-separated integers, N, M, and D. M lines follow, the *i*th of which contains three space separated integers, v_i , l_i , and r_i . N more lines follow, the *j*th of which contains two space separated integers, a_j and d_j .

Output Specification

Output N lines, the jth of which containing a single integer, the minimum possible penalty that the jth student can achieve.

Constraints

In all subtasks, $1 \leq N, M, D \leq 200\,000$ $1 \leq v_i \leq 10^6$ $0 \leq a_j \leq M$ $1 \leq d_j, l_i, r_i \leq D$ $l_i \leq r_i$

Subtask 1 [5%]

 $1 \leq N, M, D \leq 300$

Subtask 2 [10%]

 $1 \leq N, M, D \leq 5\,000$

Subtask 3 [35%]

 $l_i=1$ and $r_i=D$

Subtask 4 [50%]

No additional constraints.

Sample Input

5 4 5		
5 3 5		
2 1 3		
3 2 4		
7 4 5		
04		
1 3		
2 5		
3 2		
4 1		

Sample Output

18			
16			
3			
7			
0			

Explanation for Sample Output

The optimal move for student 1 is to attend the lecture for problem 4 resulting in a penalty of 1(5) + 2(2) + 3(3) = 18. The optimal move for student 2 is to attend the lecture for problem 3 resulting in a penalty of 1(2) + 2(7) = 16. The optimal move for student 3 is to attend the lecture for problem 4 resulting in a penalty of 1(3) = 3. Student 4 can't attend any useful lectures and so has a penalty of 1(7) = 7. Student 5 doesn't need any lectures and has a penalty of 0.