Time limit: 2.0s Memory limit: 256M

Counting is very difficult so Veshy asks you for help. You are given two positive integers, a and b. You want to find the highest power of a, n, that will divide into b!. In other words, you want to find the maximum n such that a^n divides into b!.

Input Specification

The input is a single line containing two space-separated integers, a and b in that order. $2 \le a < b \le 10^6$

Output Specification

Output on a single line, the number n such that a^n divides into b! and n is the greatest possible.

Sample Input 1

8 849

Sample Output 1

281

Sample Input 2

2 2020

Sample Output 2

2013

Explanation

In sample input 1, 8^{281} is the highest power of 8 that can divide into 849!. In sample input 2, 2^{2013} is the highest power of 2 that can divide into 2020!.