DMOPC '19 Contest 4 P6 - little_prince's Specialty Tea House

Time limit: 2.5s **Memory limit:** 256M

little_prince is opening a specialty tea house! One of his famous dishes is taiyaki, which is typically cooked in small fish-shaped molds. **little_prince** has N such molds lined up in a row. He knows that the batter inside the i-th taiyaki still needs to cook for t_i more seconds to be done. As running a specialty tea house is a lot of work, he wants you to help him answer Q queries, each of which is one of the following types:

- 1 x which means to print the amount of time the i-th taiyaki still needs to be cooked.
- 2 x y t which means that **little_prince** considers cooking the pans x, x + 1, ..., y for t seconds. If it would cause one of the taiyaki to overcook (overcooking means that $t > t_i$, where $x \le i \le y$), he ignores this instruction. Otherwise, he cooks each taiyaki in the range for t seconds.
- 3 x y t which means that little_prince deems that the taiyaki in pans $x, x+1, \ldots, y$ are not up to standard. He pours new batter into the pans starting from left to right at a rate of one pan per second while the pans are heating. This means that the cook times of the pans becomes $t_i = t y + i$ for $x \le i \le y$ as the earlier pans get cooked a little when little_prince is pouring in the batter for the later pans. It is guaranteed that $t y + x \ge 0$.
- 4 x y which means that **little_prince** reduces the cook times of each taiyaki in pans $x, x+1, \ldots, y$ to the floor of the square root of its original cook time. That is $t_i = \left| \sqrt{t_i} \right|$ for $x \le i \le y$.

Constraints

In all subtasks,

 $1 \le N \le 100\,000$

 $1 \le Q \le 500\,000$

 $1 \le x \le y \le N$

 $1 \le t_i, t \le 10^{18}$

Subtask 1 [10%]

 $1 \le N, Q \le 2000$

Subtask 2 [20%]

There are no type 3 or type 4 operations.

Subtask 3 [20%]

There are no type 3 operations.

Subtask 4 [50%]

No additional constraints.

Input Specification

The first line contains two integers, N and Q.

The second line contains N integers, t_1, t_2, \ldots, t_N , the initial cook times.

The next Q lines each contain a query, in the format as described above.

Output Specification

Output one integer on a separate line for each type 1 query.

Sample Input

```
      5 8

      1 3 1 7 6

      2 3 5 3

      4 1 3

      1 3

      3 2 4 4

      1 3

      4 1 5

      2 1 4 1

      1 3
```

Sample Output

```
1
3
0
```

Explanation for Sample Output

The first operation cannot be completed as it would cause the third taiyaki to overcook. Therefore, the array is 1 3 1 7 6.

After the second operation, the array is 1 1 1 7 6.

After the fourth operation, the array is 1 2 3 4 6.

After the sixth operation, the array is 1 1 1 2 2.

After the seventh operation, the array is 0 0 0 1 2.