Time limit: 1.0s Memory limit: 128M

Veshy is taking a class in linear algebra! He comes across a problem about the rotations of points with respect to the origin. However, he deems this too trivial so he comes up with the following problem instead:

Veshy chooses two points located at integer coordinates, A and B, on the 2D plane. There is initially a token at A. Veshy also has a sequence of N points, all located at integer coordinates, on this plane, a_1, a_2, \ldots, a_N . One operation is defined as choosing some index i and rotating the token by an arbitrary angle around a_i . However, if Veshy previously performed an operation on index i, he is only allowed to perform an operation on index j if j > i. Determine if it's possible to move the token from A to B, and if so, the minimum number of operations required.

Constraints

In all subtasks, $1\leq N\leq 500$ The absolute value of all coordinates will be less than or equal to 10^9 .

Subtask 1 [5%]

N = 1

Subtask 2 [10%]

 $1 \leq N \leq 2$

Subtask 3 [25%]

 $1 \leq N \leq 15$

Subtask 4 [60%]

No additional constraints.

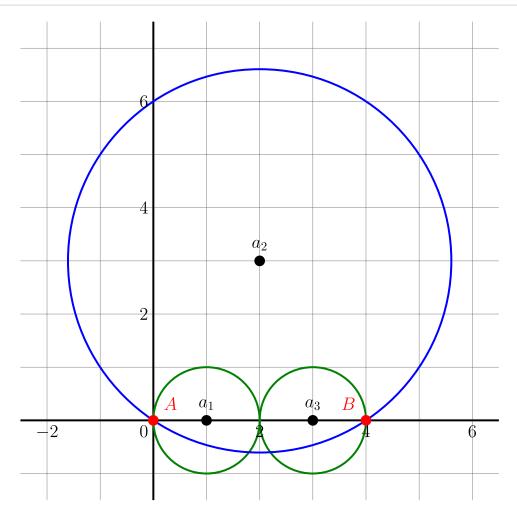
Input Specification

The first line contains one integer, N.

The second line contains two space-separated integers, A_x and $A_{y'}$ the coordinates of point A. The third line contains two space-separated integers, B_x and $B_{y'}$ the coordinates of point B. The next N lines contain two space-separated integers, x_i and y_i the coordinates of point a_i .

Output Specification

Output one line containing one integer, the minimum number of operations if it's possible and ____ otherwise.


Sample Input

3				
00)			
4 6)			
1 0)			
2 3	3			
3 6)			

Sample Output

1

Explanation for Sample Output

One sequence of operations would be to rotate the token 180° around a_1 and then another 180° around a_3 . This sequence is shown in green. This would require two operations.

Another sequence would be rotating the token 67.38° counter-clockwise around a_2 . This sequence is shown in blue. This would require one operation and it can be shown that there is no shorter sequence.