DMOPC '19 Contest 1 P3 - Simple Math

Time limit: 2.5s **Memory limit:** 128M

In math class, Bob is currently studying systems of linear equations. Being bored of his teacher's lectures, he decides to make a problem for himself. In his problem, he is trying to solve for the N variables, x_1, x_2, \ldots, x_N . He then writes M equations, the i-th of which being the equation $x_{a_i} + x_{b_i} = c_i$ where $a_i \neq b_i$. Believing that simply finding a solution to this problem would be too easy, he instead wants to find how many solutions of (x_1, x_2, \ldots, x_N) exist if he constrains each of the x_i to be a positive integer less than or equal to K. Since this number might be very large, he would be satisfied with this number modulo $10^9 + 7$.

Constraints

In all subtasks,

 $2 \leq N \leq 300\,000$

 $1 < M < 500\,000$

 $1 \le K \le 10^9$

 $1 \leq a_i, b_i \leq N$, $a_i \neq b_i$

 $2 \leq c_i \leq 2K$

Subtask 1 [10%]

 $1 \le K \le 5$

 $1 \le N \le 10$

 $1 \le M \le 20$

Subtask 2 [20%]

There is at most 1 solution.

Subtask 3 [70%]

No additional constraints.

Input Specification

The first line contains three space-separated integers, N, M, and K.

M lines follow, the i-th of which contains three space-separated integers, a_i , b_i , and c_i .

Output Specification

Output one line containing one integer, the number of solutions (x_1,x_2,\ldots,x_N) to the system modulo 10^9+7 .

Sample Input 1

```
4 3 5
1 4 6
1 3 5
2 3 3
```

Sample Output 1

2

Explanation for Sample Output 1

The two solutions are (3, 1, 2, 3) and (4, 2, 1, 2).

Sample Input 2

4 4 5 1 2 2 1 3 2 1 4 2 2 4 4

Sample Output 2

0

Explanation for Sample Output 2

There are no solutions to this system of equations.