Time limit: 2.0s Memory limit: 64M

The **Multiply**, **Screen**, and **Overlay** blend modes in image manipulation programs such as Photoshop are very useful when making digital art. If you apply one of these modes to a **base colour** and a **top colour**, a **resulting colour** is produced. Colours have three components: R, G, and B, which can have any real value from 0 to 1 (completely dark to completely light) inclusive, and modes operate on each component separately. Let's call a component of the base colour X_a and the same component of the top colour X_b .

If you apply the Multiply mode, the resulting component will be $X_a X_b$. As this produces a darker colour, it is good for drawing shadows.

If you apply the Screen mode, the resulting component will be $1 - (1 - X_a)(1 - X_b)$. As this produces a lighter colour, it is good for drawing highlights.

The Overlay mode produces different results depending on the base component. If this component is less than 0.5, the resulting value is $2X_aX_b$. Otherwise, the resulting value is $1 - 2(1 - X_a)(1 - X_b)$. As this makes dark colours darker and light colours lighter, it is good for adding contrast.

Given a blend mode and each component of the base and top colours, please find the resulting colour.

Input Specification

The first line will contain one of the following strings: Multiply, Screen, or Overlay, the blend mode.

The second line will contain 3 space-separated real numbers: R_{a} , G_{a} , and B_{a} representing each component of the base colour.

The third and final line will contain 3 space-separated real numbers: R_{b} , G_{b} , and B_{b} representing each component of the top colour.

Output Specification

Output 3 space-separated real numbers on one line: the R, G, and B of the resulting colour. Your answer will be judged correct if it has an absolute or relative error less than or equal to 10^{-6} .

Sample Input

Multiply 0.30 0.22 0.90 0.52 0.12 0.03

Sample Output

0.156000 0.026400 0.027000