DMOPC '18 Contest 4 P0 - Dr. Henri and Seeing Stars

Time limit: 2.0s **Memory limit:** 64M

Dr. Henri is looking through his telescope at the MRD Observatory. His telescope is positioned so that it can see all the stars inside a circle of radius R centred at the coordinates (X,Y) in the night sky. The telescope **cannot** see a star if it is on the edge of the circle.

Dr. Henri is interested in 3 particular stars: A, B, and C. Referring to his star charts, he notes that their coordinates are (x_A, y_A) , (x_B, y_B) , and (x_C, y_C) and their **magnitudes** are m_A , m_B , and m_C respectively. The magnitude of a star is a measure of its brightness, but interestingly, its scale is reversed: **the smaller the magnitude**, **the brighter the star**.

Dr. Henri wonders if he can see the brightest star among A, B, and C through his telescope. It is guaranteed that no two of these stars are of the same magnitude.

Constraints

```
egin{aligned} 1 \leq R \leq 100 \ -100 \leq x_A, y_A, x_B, y_B, x_C, y_C, X, Y \leq 100 \ -100 \leq m_A, m_B, m_C \leq 100 \end{aligned}
```

Input Specification

The first line of input will contain three space-separated integers, R, X, and Y. The second line will contain three space-separated integers, x_A , y_A , and m_A .

The third line will contain three space-separated integers, x_{B} , y_{B} , and m_{B} .

The final line will contain three space-separated integers, x_{C_t} y_{C_t} and m_{C_t} .

Output Specification

If Dr. Henri can see the brightest star among A, B, and C, output What a beauty! Otherwise, output Time to move my telescope!

Sample Input 1

-9 1 4

Sample Output 1

What a beauty!

Sample Input 2

-2 -3 3

Sample Output 2

Time to move my telescope!