DMOPC '18 Contest 2 P1 - Pumpkin Patches

Time limit: 2.0s **Memory limit:** 64M

Roger is getting ready for his final¹ Halloween of high school!

To celebrate, he goes to the land of Cartesia with Robert to grow P pumpkins. The $i^{\rm th}$ pumpkin is at point (x_i, y_i) .

Unfortunately, the Pumpkin King of Cartesia has demanded that he surround his field of pumpkins with an axis-aligned rectangular fence first. Given that Roger is very poor, can you determine the minimum length of fencing he needs to enclose all his pumpkins?

Note: A pumpkin is considered within the fence if it lies on the fence.

¹Assuming he doesn't fail to graduate...

Constraints

 $2 \le P \le 100\,000$

 $-1\,000\,000 \le x_i, y_i \le 1\,000\,000$

The locations of all pumpkins are pairwise distinct.

It is guaranteed the area enclosed by the fence will be positive.

Input Specification

The first line of input will contain a single integer, P.

The next P lines will each contain two space-separated integers, x_i and y_i the coordinates of the $i^{ ext{th}}$ pumpkin.

Output Specification

A single integer, the amount of fencing Roger and Robert will need.

Sample Input

5

0 0

1 0

0 2

1 1

0 1

Sample Output

Explanation for Sample

The 4 corners of the fence are (0,0), (1,0), (1,2), and (0,2).