
Page 1 of 6

DMOPC '16 Contest 2 P6 - Console Simulator 2017

Gigel is back at it with a new challenge. He wants to create a new game for his friends to play. However, this kind of
project is hard for a single person to handle, so he asks you for help on the backend for the console system. He gives
you his work paper regarding the story part of this game:

Name: Console Simulator 2017
Genre: Simulator, Action, Horror
Description: You are trapped in a room, where the only working thing is a computer. As you start poking around,
you find out that the console you are sitting at is controlling the whole building, and also your life. Prepare yourself
for a run for your life while writing in the console.

The system that you must design has to simulate a console. It has to emulate a console similar to a UNIX one. Here is
the list of commands that you have to emulate, and the details for each one:

ls - Lists the subdirectories and the files contained by the current folder. If it has the -r argument, it will list
the subdirectories and files recursively.
cd - Changes the directory to the specified one. If the path starts with ~/ , you will have an absolute path.
grep - Searches through a list and makes a result list. The search query is a regex subset. It will only use the ^ ,
$ and . special characters. The ^ and $ are position markers, which can be put at the beginning or the

end of the query. The . character is considered a wildcard, and can be replaced by any other character. See the
sample for more details.
mkdir - Creates a new directory in the current folder.
touch - Creates a new file in the current folder.
pwd - Prints the current path.
exit - Exits the console.

Input Specification

Firstly, you will receive the initial folder structure.
On the first line, you will have a number .
On the next lines, you will find the current depth and the name of the file/folder.
After this, you will find commands, and you will stop reading when you reach the exit command.

Output Specification

The outputs from the commands are always separated by one empty line. After the last command, be sure to also have
an additional blank line.

Constraints and Notes

Time limit: 1.2s Memory limit: 128M

N

N

0 ≤ N ≤ 105 000

Page 2 of 6

Each folder will have at most subdirectories and files.
The maximum depth will be .
In a folder there will not be two subdirectories or files with the same name.
A file always has an extension. (ends with .<ext>)
The output of each command must be printed sorted lexicographical.
Always print \n\n after the output of a command, even if the command does not print anything.
If you don't print \n\n after the output from every command that gives output, you will get WA .
Be sure to ask in the comments if you don't find a piece of information.

Sample Input

1000 1000

100

Page 3 of 6

35
0 usr
1 home
2 homespace
3 desktop
3 helper
2 derringer
3 games
4 steam
5 magico
6 map
7 part1.map
7 part2.map
6 exe
7 steam_api.dll
7 magico.exe
5 europauniversalis4
6 history
7 data.txt
6 map
7 map.dat
6 common
3 nothere
3 yarp
0 system
1 util
2 lsgrepandcd
3 nofiles
2 gcc
2 g++
1 xgraphicssystem
2 source
2 binariesbin
3 server.exe
2 gource
2 orrel
cd usr
cd home
cd derringer
ls
ls -r
ls | grep a
ls -r | grep a
cd games
ls
pwd

Page 4 of 6

cd ~/
ls -r | grep \.exe$
ls -r | grep ^g...
ls -r | grep ^g..$
exit

Sample Output

Page 5 of 6

games
nothere
yarp

common
data.txt
europauniversalis4
exe
games
history
magico
magico.exe
map
map
map.dat
nothere
part1.map
part2.map
steam
steam_api.dll
yarp

games
yarp

data.txt
europauniversalis4
games
magico
magico.exe
map
map
map.dat
part1.map
part2.map
steam
steam_api.dll
yarp

steam

~/usr/home/derringer/games/

magico.exe
server.exe

Page 6 of 6

games
gource

g++
gcc

