Time limit: 0.6s Memory limit: 64M

Two magicians named Alice and Bob participate in a challenge. The two participate in a race on a circular track split into K equal-length sectors, determined by the points $P_0, P_1, \ldots, P_{K-1}$.

- Alice starts at point P_a and runs through S_a sectors per second.
- Bob starts at point P_b and runs through S_b sectors per second.

If at any point in the race the distance between the two is less than D, Alice will use her magic to instantly push Bob a minimum distance such that the two magicians remain at a distance greater or equal to D. The winning conditions are as follows:

- Alice wins if it **is possible** that sometime during the race, the sum of the shortest distance (running on the circular track) between herself to P_0 and Bob to P_0 is prime.
- Bob wins if Alice cannot.

In a given scenario, who wins?

Input Specification

The first line of input will contain the integers K ($0 < K \le 1000$) and D ($0 \le D < \frac{K}{2}$).

The second line of input will contain the integers S_a and S_b . The third line of input will contain the integers P_a and P_b .

Output Specification

Either Alice or Bob, identifying the winner.

Constraints

- $S_a, S_b, P_a, P_b < K$.
- At least a turn is executed.
- In case Alice and Bob are on the same segment, Bob is pushed behind Alice.

Sample Input

62			
23			
0 1			

Sample Output

Alice

Explanation

At the start, the positions of (Alice, Bob) are (0, 1), but immediately this changes to (0, 2) as Alice pushes Bob. In the second instant, we have the positions (0 + 2 = 2, 2 + 3 = 5), such that the sum of distances to P_0 is (6-2) + (6-5) = 5. Since 5 is a prime number, Alice wins.