DMOPC '15 Contest 6 P2 - Tilt

Time limit: 1.0s **Memory limit:** 64M

cheesecake is preparing to write some math tests. Since math does not come easily to **cheesecake**, he is also preparing for the worst: not getting perfect on each one. Whenever **cheesecake** botches a test, the experience emotionally tilts him — it throws him off his game. He has to write N tests, knowing that test i will tilt him by T_i degrees (naturally, tilt is mathematically represented in degrees).

Remembering the wise words of his math teacher, **cheesecake** recalls that once you tilt a full 360 degrees, you are back to normal — that is, a tilt of 360° is equal to no (zero) tilt.

cheesecake would like to know just how disappointed he will feel after writing all his tests. To this end, he has asked you to determine his final tilt.

Input Specification

The first line of input will contain the integer N ($1 \le N \le 100$), the number of math tests **cheesecake** will write. The next N lines of input will each contain the decimal tilt of a test, with line i representing T_i ($0.0 \le T_i \le 10.0^{15}$). Each decimal will be written with exactly six digits after the decimal point.

Output Specification

A single decimal value in the range [0,360); **cheesecake**'s tilt after writing all his tests. Answers will be considered correct if they are within an absolute or relative error less than or equal to 10^{-5} .

Sample Input

2 0.000000 361.000000

Sample Output

1.000000

Explanation

cheesecake was well prepared for his first test, but his second test had some tricky logarithms that tilted him by 361° . This is equivalent to a tilt of 1° .