
Non-constructive Constant Time Algorithm

Let be a function from the natural numbers to the booleans. Suppose that for all , if is true, then is
true. Prove that either:

1. is false for all .

2. There exists such that .

This proof has applications, too. For example, let denote the truth value of " does not contain consecutive 's in
its decimal representation." Either , or there exists such that . Therefore, has a constant
time algorithm, but the exact algorithm remains unknown.

Definitions

-- header.lean
def Simple (f : Nat → Bool) : Prop :=
 f = (fun _ => false) ∨
 ∃ n, f = (fun x => if x < n then false else true)

def NonconstructiveConstantTime : Prop :=
 ∀ p : Nat → Bool,
 (∀ n, p n → p (n + 1)) →
 Simple p

macro "check0123456789abcdef" t:ident : command => `(
 example : NonconstructiveConstantTime := $t
 #print axioms $t
)

Note: The macro's name is randomly generated on each submission, and will follow the format check[0-9a-f]{16} .

Proof Format

Your goal is to define a term proof with the type NonconstructiveConstantTime . You may use this template for
your submission:

Time limit: 1.0s Memory limit: 256M

p x p(x) p(x + 1)

p(x) x

n p(x) = {
false if x < n

true if x ≥ n

q(x) π x 9

q(x) = false n q(x) = (x ≥ n) q

-- submission.lean
open Classical

def proof : NonconstructiveConstantTime := by
 admit

The judge will automatically prepend import header to your submission.

You may use the following axioms: Classical.choice , Quot.sound , propext

Checker

-- entry.lean
import header
import submission
check0123456789abcdef proof -- 'proof' depends on axioms: [Classical.choice, Quot.sound,
propext]

If you find a way to fool the checker, please open a ticket by clicking the "Report an issue" button at the bottom of the
page, and add a link to your submission in the ticket.

