Time limit: 3.0s Memory limit: 1G

An *expression* is a string consisting only of properly paired brackets. For example, ()() and (()()) are expressions, whereas)(and ()(are not. We can define expressions inductively as follows:

- () is an expression.
- If *a* is an expression, then (*a*) is also an expression.
- If *a* and *b* are expressions, then *ab* is also an expression.

A *tree* is a structure consisting of n nodes denoted with numbers from 1 to n and n - 1 edges placed so there is a unique path between every two nodes. Additionally, a single character is written in each node. The character is either an open bracket () or a closed bracket). For different nodes a and b, $w_{a,b}$ is a string obtained by traversing the unique path from a to b and, one by one, adding the character written in the node we're passing through. The string $w_{a,b}$ also contains the character written in node a (at the first position) and the character written in node b (at the last position).

Find the total number of pairs of different nodes a and b such that $w_{a,b}$ is a correct expression.

Input Specification

The first line contains the integer n — the number of nodes in the tree. The following line contains an n-character string where each character is either) or (), the j^{th} character in the string is the character written in the node j. Each of the following n - 1 lines contains two different positive integers x and y ($1 \le x, y \le n$) — the labels of nodes directly connected with an edge.

Output Specification

Output the required number of pairs.

Constraints

Subtask	Score	Constraints
1	10	$n \leq 1000$
2	30	$n \leq 300000$, the tree is a chain — each node $x=1,\ldots,n-1$ is connected to node $x+1$.
3	60	$n \leq 300000$

Sample Input 1

4			
(())			
1 2			
2 3			
3 4			

Sample Output 1

2

Sample Input 2

5		
())((
1 2		
2 3		
2 4		
3 5		

Sample Output 2

2			
C			

Sample Input 3

7	
)()()((
1 2	
1 3	
1 6	
2 4	
4 5	
5 7	

Sample Output 3