COI '12 #1 Hiperprostor

Time limit: 0.5s Memory limit: 32M

In the distant future, food is transported between planets via **one-way trade routes**. Each route directly connects two planets and has a known **transit time**.

The traders' guild plans to add some new routes utilizing a recently discovered technology – hyperspace travel. Travelling via hyperspace is also one-directional. Since it is still experimental, hyperspace travel time is **not yet known**, however it is known not to depend on distances between planets, so each hyperspace route will take an **equal amount of time** to traverse.

The picture below shows an example of three interconnected planets with transit times shown. The planets are labelled with positive integers, and the hyperspace travel time is denoted by x (the picture corresponds to the second example input):

Transit time is measured in days and is always a **positive integer**.

The traders' guild wishes to analyze the consequences of introducing the new routes: for some two planets A and B, they want to know what are **all the possible values** of the **shortest path** total transit time from A to B, for all possible values of x. For example, in the situation above, shortest path travel from planet 2 to planet 1 could take 5 (if $x \ge 5$), 4, 3, 2, or 1 day (if x < 5).

Input Specification

The first line of input contains the two integers P and R, the number of planets and the number of routes, respectively $(1 \le P \le 500, 0 \le R \le 10\,000)$.

Each of the following R lines contains two integers C and D, the planet labels $(1 \le C, D \le P, C \ne D)$, and T, the travel time from C to D. For conventional routes, T is an **integer** $(1 \le T \le 1\,000\,000)$, and for hyperspace routes, T is **the character** \mathbf{x} . Multiple lines can exist between the same two planets.

The following line contains the integer Q, the number of queries $(1 \le Q \le 10)$.

Each of the following Q lines contains two integers A and B, the planet labels $(A \neq B)$ representing a **query** by the traders' guild: "what are the possible values of shortest path transit time from A to B?".

Output Specification

The output must contain Q rows, one per query.

Each row must contain two integers: the **number of different values** and **their sum**. If the number of different values is **unbounded**, output only inf in that row. If there is no path from A to B, the number of different values and their sum is 0.

Scoring

If the output is incorrect, but the first number in each of the Q rows is correct, the solution will be awarded 50% of points for that test case. *Note:* The output must contain both numbers in each row where the number of values is bounded in order to qualify.

In test data worth a total of 50 points, the following constraints hold: $P \leq 30$, $R \leq 300$, and $T \leq 50$.

Sample Input 1

44	
1 2	х
23	х
34	х
14	8
3	
2 1	
13	
14	

Sample Output 1

0 0 inf 3 17

Explanation for Sample Output 1

- 1. There is no possible path from 2 to 1.
- 2. For any positive integer x, the shortest path from 1 to 3 takes 2x time, so the solution is inf.
- 3. The shortest path from 1 to 4 can take 3 (for x = 1), 6 (for x = 2), or 8 (for $x \ge 3$) time. 3 + 6 + 8 = 17.

Sample Input 2

35		
32	x	
2 1	x	
2 1	5	
1 3	10	
31	20	
	20	
6		
12		
23		
31		
2 1		
32		
13		

Sample Output 2

inf 5 65			
15 185			
5 15 inf			
inf			
1 10			