COCI '20 Contest 4 #1 Pizza

Time limit: 1.0s **Memory limit:** 512M

After a long and miserable day at work, Mirko decided to order a pizza for dinner to cheer himself up. In a big pile of papers on his desk, he found a flyer of a nearby pizza restaurant. The restaurant offers m different pizzas. Pizza toppings are labeled with positive integers. i^{th} pizza has k_i toppings, with labels $b_{i,1}, b_{i,2}, \ldots, b_{i,k_i}$.

Mirko is very picky when it comes to food. He doesn't like n toppings, those with labels a_1, a_2, \ldots, a_n , so he wants to order a pizza that doesn't contain any of those toppings. Determine the number of pizzas that Mirko can order.

Constraints

Subtask	Points	Constraints
1	20	$n=1 \ k_1=k_2=\cdots=k_m=1$
2	30	No additional constraints.

Input Specification

The first line contains an integer n ($1 \le n \le 100$), the number of toppings, followed by n distinct integers a_i ($1 \le a_i \le 100$), the labels of toppings Mirko dislikes.

The second line contains an integer $m\ (1 \leq m \leq 100)$, the number of pizzas.

The following m lines describe the pizzas. The $i^{\rm th}$ line contains an integer k_i ($1 \le k_i \le 100$), the number of toppings, followed by k_i distinct integers $b_{i,j}$ ($1 \le b_{i,j} \le 100$), the labels of toppings on the $i^{\rm th}$ pizza.

The pizzas, i.e. the sets of toppings, will be distinct.

Output Specification

Output the number of pizzas that Mirko can order.

Sample Input 1

- 1 2
- 3 1 1
- 1 2
- 1 3

Sample Output 1

2

Sample Input 2

2 1 2 4 2 1 4 3 1 2 3 2 3 4 3 3 5 7

Sample Output 2

2

Sample Input 3

1 4
3
1 1
1 2
1 3

Sample Output 3

3