
Time limit: 4.0s Memory limit: 1G

You are given a positive integer n and a sequence a_1, a_2, \ldots, a_n of positive integers, such that $\frac{i(i-1)}{2} < a_i \leq \frac{i(i+1)}{2}$.

The sequence parameterizes a tree with $\frac{(n+1)(n+2)}{2}$ vertices, consisting of n+1 levels with $1, 2, \ldots, n+1$ vertices, in the following way:

The tree parameterized by a = (1, 2, 6).

The *i*-th level contains vertices $\frac{i(i-1)}{2} + 1, \ldots, \frac{i(i+1)}{2}$. The vertex a_i has two children, and the rest of the vertices on the level have one child each.

We want to answer q queries of the form "what is the largest common ancestor of x and y", i.e. the vertex with the largest label which is an ancestor of both x and y.

Input

The first line contains integers n, q and t $(1 \le n, q \le 200\,000, t \in \{0, 1\})$, the number of parameters, the number of queries, and a value which will be used to determine the labels of vertices in the queries.

The second line contains a sequence of n integers a_i $(rac{i(i-1)}{2} < a_i \leq rac{i(i+1)}{2})$ which parameterize the tree.

The *i*-th of the following q lines contains two integers \tilde{x}_i and \tilde{y}_i $(1 \le \tilde{x}_i, \tilde{y}_i \le \frac{(n+1)(n+2)}{2})$ which will be used to determine the labels of vertices in the queries.

Let z_i be the answer to the *i*-th query, and let $z_0 = 0$. The labels in the *i*-th query x_i and y_i are:

$$egin{aligned} x_i &= \left((ilde{x_i} - 1 + t \cdot z_{i-1}) egin{aligned} &= \left((ilde{x_i} - 1 + t \cdot z_{i-1}) egin{aligned} &= \left((n+1)(n+2) \ &= 2 \end{array}
ight) + 1, \end{aligned}$$

where mod is the remainder of integer division.

Remark: Note that if t = 0, it holds $x_i = \tilde{x_i}$ and $y_i = \tilde{y_i}$, so all queries are known from input. If t = 1, the queries are not known in advance, but are determined using answers to previous queries.

Output

Output q lines. In the *i*-th line, output the largest common ancestor of x_i and y_i .

Scoring

Subtask	Score	Constraints
1	10	q=1,t=0
2	10	$n\leq 1000,t=0$
3	30	t=0
4	60	t = 1

Sample Input 1

3 5 0
1 2 6
7 10
8 5
6 2
9 10
2 3

Sample Output 1

1

Explanation for Sample Output 1

The tree from Sample Input 1 is shown in the figure in the statement.

Sample Input 2

351			
126			
7 10			
8 5			
62			
9 10			
2 3			

Sample Output 2

1 6 2 1 1

Explanation for Sample Output 2

The tree from Sample Input 2 is shown in the figure in the statement.

Labels of vertices in queries in the second example are:

 $egin{aligned} x_1 &= 7, y_1 &= 10, \ x_2 &= 9, y_2 &= 6, \ x_3 &= 2, y_3 &= 8, \ x_4 &= 1, y_4 &= 2, \ x_5 &= 3, y_5 &= 4. \end{aligned}$