Time limit: 1.0s Memory limit: 512M

It is rarely mentioned that Euclid's grandma was from Vrsi in Croatia. It is from there that Euclid's less known (but equally talented in his youth) cousin Edicul* comes from.

It happened one day that they were playing "invent an algorithm". Edicul writes two positive integers on the sand. Then he does the following: while neither number on the sand is 1, he marks them as (a, b) so that $a \ge b$. Then the numbers are erased and he writes $(\lfloor \frac{a}{b} \rfloor, b)$ on the sand, and repeats the process. When one of the two numbers becomes 1, the other is the results of his algorithm.

Formally, if a and b are positive integers, the result R(a, b) of Edicul's algorithm is:

$$R(a,b) = egin{cases} R(b,a) & ext{if} \; a < b \ R(\lfloor rac{a}{b}
floor,b) & ext{if} \; a \geq b > 1 \ a & ext{if} \; a \geq b = 1 \end{cases}$$

Euclid thinks for a while, and says: "Edicul, I have a better idea...", and the rest is history. Unfortunately, Edicul never became famous for his idea in number theory. This sad story inspires the following problem:

Given positive integers g and h, find positive integers a and b such that their **greatest common divisor** is g, and **the result of Edicul's algorithm** R(a, b) is h.

* This sets up a pun in Croatian. The translation is a bit bland, sorry for that.

Input

The first line contains a single integer t $(1 \le t \le 40)$ – the number of independent test cases.

Each of the following t lines contains two positive integers g_i and h_i $(h_i \ge 2)$.

Output

Output t lines in total. For the i-th test case, output positive integers a_i and b_i such that $gcd(a_i, b_i) = g_i$ and $R(a_i, b_i) = h_i$.

The numbers in the output must not be larger than 10^{18} . It can be proven that for the given constraints, a solution always exists.

If there are multiple solutions for some test case, output any of them.

Scoring

In all subtasks, $1 \leq g \leq 200\,000$ and $2 \leq h \leq 200\,000.$

Subtask	Score	Constraints	
1	4	g=h	
2	8	h=2	
3	8	$g=h^2$	
4	15	$g,h\leq 20$	
5	40	$g,h\leq 2000$	
6	35	No additional constraints.	

Sample Input 1

1			
14			

Sample Output 1

99 23

Explanation for Sample Output 1

The integers 99 and 23 are coprime, i.e. their greatest common divisor is 1. We have $\lfloor \frac{99}{23} \rfloor = 4$, thus R(99,23) = R(4,23) = R(23,4). Then $\lfloor \frac{23}{4} \rfloor = 5$, so R(23,4) = R(5,4) = R(1,4) = R(4,1) = 4.

Sample Input 2

Sample Output 2

939 55 For the first test case, $\gcd(9,39)=3$ and R(9,39)=2.

For the second test case, gcd(5,5) = 5 and R(5,5) = 5.