# COCI '11 Contest 5 #5 Blokovi

#### Time limit: 1.0s Memory limit: 32M

N rectangles with given masses  $(m_i)$  and equal lengths (2) and heights (h) are arranged in a Cartesian plane such that:

- rectangle edges are parallel to the coordinate axes;
- the y-coordinates of lower horizontal edges are distinct and assume the following values:
  0, h, 2h, 3h, ..., (N-1)h;
- the lowest rectangle's lower left corner has coordinates (-2,0), while the lower right corner coincides with the origin.



The *X*-centre of a rectangle is the x-coordinate of the midpoint of its lower edge.

The X-barycentre of one or more rectangles is the weighted average of their X-centres. It is computed as

$$X ext{-barycentre} = rac{\sum_i m_i \cdot X ext{-centre}(i)}{\sum_i m_i}$$

In other words, the mass of each rectangle is multiplied by its X-centre and the sum of these products is then divided by the total mass of the rectangles.

An arrangement is **stable** if, for each rectangle A:

• the *X*-barycentre of rectangles above *A* has distance of at most 1 from the *X*-centre of *A* (i.e. is contained in the x-interval that covers *A*).

Intuitively, stability of an arrangement can be understood as the precondition for the arrangement to **not fall apart**. The arrangement in the figure on the left is unstable since the X-barycentre of the top two rectangles falls outside the rectangle underneath (the distance of the X-barycentre to the X-centre of the underlying rectangle is greater than 1). The arrangement in the figure on the right is stable.

Given the masses of all rectangles, find the **largest** ("rightmost") **possible x-coordinate** of **any** rectangle corner in a stable arrangement. You are not allowed to change the order of rectangles (they are given from the lowest to the highest one).

#### **Input Specification**

The first line of input contains the positive integer  $N~(2 \le N \le 300~000)$ , the number of rectangles.

Each of the next N lines contains a single positive integer less than 10 000, the mass of a rectangle. The masses are given in order from the lowest to the highest rectangle.

#### **Output Specification**

The first and only line of output must contain the required rightmost x-coordinate. The given result must be within 0.000001 of the official solution.

### Scoring

In test cases worth 30% of points, the rectangles will be ordered from the heaviest to the lightest one.

#### Sample Input 1

| 2 |
|---|
| 1 |
| - |
| 1 |

#### Sample Output 1

1.000000

#### Sample Input 2

3 1 1 1

#### Sample Output 2

## Sample Input 3

| 3 |  |  |
|---|--|--|
| 1 |  |  |
| 1 |  |  |
| 9 |  |  |
|   |  |  |

### Sample Output 3

1.900000