Time limit: 5.0s Memory limit: 128M

Mirko, the mad plumber, was hired to construct a water supply network between two locations in a city. The city map can be represented as an $R \times S$ grid. Some cells are **not suitable** for placing water pipes. Locations Mirko needs to connect are placed **directly above** the top left cell of the grid, and **directly below** the bottom right cell.

Each suitable cell Mirko can either leave empty or use it for placing one of the following 6 pipe types:

Find the number of ways that pipes can be placed to connect the two locations with a continuous pipe (water must not be spilled). All placed pipe parts **must be in use**.

Output the solution **modulo** $10\,007$.

Input Specification

The first line of input contains the integers R and S ($2 \le R, S \le 10$), the number of rows and columns of the city grid, respectively. Each of the next R lines contains exactly S characters: • if the cell is suitable for placing pipes, and # if not.

Output Specification

The first and only line of output must contain the required number of ways modulo $10\,007$.

Sample Input 1

2 3			
•••			
.#.			

Sample Output 1

1

Explanation for Sample Output 1

This is the only possible solution:

Sample Input 2

3 3		
•••		
•••		
•••		

Sample Output 2

12