In an infinite binary tree:

- Each node has exactly two children a left and a right child.
- If a node is labeled with the integer X, then its left child is labeled $2 \cdot X$ and its right child $2 \cdot X + 1$.
- The root of the tree is labeled 1.

A walk on the binary tree starts in the root. Each step in the walk is either a jump onto the left child, onto the right child, or pause for rest (stay in the same node).

A walk is described with a string of letters L, R and P:

- L represents a jump to the left child;
- **R** represents a jump to the right child;
- P represents a pause.

The value of the walk is the label of the node we end up on. For example, the value of the walk **LR** is 5, while the value of the walk **RPP** is 3.

A set of walks is described by a string of characters L, R, P and *. Each * can be any of the three moves; the set of walks contains all walks matching the pattern.

For example, the set L*R contains the walks LLR, LRR and LPR. The set ** contains the walks LL, LR, LP, RL, RR, RP, PL, PR and PP.

Finally, the value of a set of walks is the sum of values of all walks in the set.

Calculate the value of the given set of walks.

Input Specification

A string describing the set. Only characters [L], [R], [P] and [*] will appear and there will be at most $10\,000$ of them.

Output Specification

Output the value of the set.

Scoring

In test data worth 30% points, there will be no characters (*). In test data worth 50% points, there will be at most three characters (*).

Sample Input 1

Sample Output 1

6

Sample Input 2

L*R

Sample Output 2

25

Sample Input 3

**

Sample Output 3

33

Sample Input 4

LLLLLRRRRRLLLLLRRRRRLLLLL

Sample Output 4

35400942560