Time limit: 0.6s Memory limit: 32M

Consider a sequence A of integers, containing N integers between 1 and N. Each integer appears exactly once in the sequence.

A subsequence of A is a sequence obtained by removing some (possibly none) numbers from the beginning of A, and then from the end of A. Calculate how many different subsequences of A of odd length have their median equal to B. The median of a sequence is the element in the middle of the sequence after it is sorted. For example, the median of the sequence $\{5, 1, 3\}$ is 3.

Input Specification

The first line contains two integers, $N~(1 \le N \le 100~000)$ and $B~(1 \le B \le N)$.

The second line contains N integers separated by spaces, the elements of sequence A.

Output Specification

Output the number of subsequences of A whose median is B.

Sample Input 1

5	4			
1	2	3	4	5

Sample Output 1

2

Sample Input 2

6 3 1 2 4 5 6 3

Sample Output 2

Sample Input 3

7 4 5 7 2 4 3 1 6

Sample Output 3

4

Explanation for Sample Output 3

In the third example, the four subsequences of A with median 4 are $\{4\}$, $\{7, 2, 4\}$, $\{5, 7, 2, 4, 3\}$ and $\{5, 7, 2, 4, 3, 1, 6\}$.