The 19th century German mathematician Hermann Minkowski investigated a non-Euclidean geometry, called the taxicab geometry. In taxicab geometry the distance between two points and is defined as:
All other definitions are the same as in Euclidean geometry, including that of a circle:
A circle is the set of all points in a plane at a fixed distance (the radius) from a fixed point (the centre of the circle).
We are interested in the difference of the areas of two circles with radius , one of which is in normal (Euclidean) geometry, and the other in taxicab geometry. The burden of solving this difficult problem has fallen onto you.
Input Specification
The first and only line of input will contain the radius , an integer smaller than or equal to .
Output Specification
On the first line you should output the area of a circle with radius in normal (Euclidean) geometry.
On the second line you should output the area of a circle with radius in taxicab geometry.
Note: Outputs within of the official solution will be accepted.
Sample Input 1
1
Sample Output 1
3.141593
2.000000
Sample Input 2
21
Sample Output 2
1385.442360
882.000000
Sample Input 3
42
Sample Output 3
5541.769441
3528.000000
Comments