CEOI '17 P5 - Palindromic Partitions

Time limit: 4.5s Memory limit: 128M

A *partition* of a string *s* is a set of one or more non-overlapping non-empty substrings of *s* (call them a_1, a_2, \ldots, a_d), such that *s* is their concatenation: $s = a_1 + a_2 + \cdots + a_d$. We call these substrings "chunks" and define the *length* of such a partition to be the number of chunks, *d*.

We can represent the partition of a string by writing each chunk in parentheses. For example, the string "decode" can be partitioned as (d)(ec)(ode) or (d)(e)(c)(od)(e) or (decod)(e) or (decod)(e) or (decode) or (decode) or a number of other ways.

A partition is *palindromic* if its chunks form a palindrome when we consider each chunk as an atomic unit. For example, the only palindromic partitions of "decode" are (de)(co)(de) and (decode). This also illustrates that every word has a trivial palindromic partition of length one.

Your task is to compute the maximal possible number of chunks in palindromic partition.

Input

The input starts with the number of test cases t in the first line. The following t lines describe individual test cases consisting of a single word s, containing only lowercase letters of the English alphabet. There are no spaces in the input.

Output

For every test case, output a single number: the length of the longest palindromic partition of the input word *s*.

Constraints

Let us denote the length of the input string s with n.

- $1 \le t \le 10$
- $1 \leq n \leq 10^6$

Subtask 1 (15%)

• $n\leq 30$

Subtask 2 (20%)

• $n\leq 300$

Subtask 3 (25%)

• $n \leq 10\,000$

Subtask 4 (40%)

• no additional constraints

Sample Input 1

4			
bonobo			
deleted			
racecar			
racecars			

Sample Output 1

3		
5		
7		
1		