CCO '12 P3 - Mhocskian Languages

Time limit: 1.0s Memory limit: 1G

Canadian Computing Competition: 2012 Stage 2, Day 1, Problem 3

Linguists are currently studying Mhocskian, the language of the native inhabitants of Mhocsky island. The linguists have found a description of how the natives construct words in Mhocskian, and a list of words. The linguists would now like to know which of the words in the list are **valid** Mhocskian words.

Rules

Words in Mhocskian are constructed according to a set of **rules**. These rules involve two types of components: **variables** and **terminals**. A variable is an uppercase letter used in the description of the rules. A terminal is a lowercase letter that is part of a Mhocskian word. Variables and terminals are just **uppercase** and **lowercase** letters, respectively, of the English alphabet.

There are two types of rules. The first type of rule allows you to replace a variable V by two variables V_1V_2 in that order, and we write $V \rightarrow V_1V_2$ as a short form for this type of rule. The second type of rule allows you to replace a variable V by a terminal t, and we write $V \rightarrow t$ as a short form for this type of rule.

One of the variables is the start variable. A word w is composed of lowercase letters from the English alphabet. It is a **valid** Mhocskian word if, starting from the start variable, it is possible to follow a sequence of rules to obtain w.

Example

Suppose we have variables $\{S, A, B\}$, terminals $\{a, b\}$, and rules

$$\{S
ightarrow AB, S
ightarrow a, A
ightarrow a, B
ightarrow b\}.$$

The word "ab" is a valid Mhocskian word because it can be constructed in the following way: $S \to AB \to aB \to ab$. The word "a" can be constructed simply by $S \to a$. The word "b" cannot be constructed.

Input

On the first line, two integers V and T in that order, denoting the number of variables and terminals, respectively, in Mhocskian.

On the second line, V space separated uppercase letters, the variables. The **first** variable on the line is always the start variable.

On the third line, T space separated lowercase letters, the terminals.

On the fourth line, there is an integer R_1 . R_1 lines follow, each of which is of the form V t, representing a rule $V \rightarrow t$.

On the next line, there is an integer R_2 . R_2 lines follow, each of the form $V V_1 V_2$, representing the rule $V o V_1 V_2$.

On the next line, there is an integer W. W lines follow, each contains a single word made entirely of lowercase letters.

Output

The output must contain W lines. On line i, output a 1 if the i^{th} word is a valid Mhocskian word, and 0 otherwise.

Constraints

$$\begin{split} &1\leq V,T\leq 26\\ &1\leq R_1+R_2\leq 30\\ &1\leq W\leq 20\\ &\text{Each of the words in the linguists' list will have length between 1 and 30.} \end{split}$$

Sample Input

5 2		
ISABC		
a b		
2		
A a		
B b		
7		
IAB		
IAC		
C S B		
SAB		
SAC		
ISS		
S S S		
4		
abababaaabbbaabbaabb		
abab		
bbaa		
aaabababbaaabbbb		

Sample Output

1		
1		
0		
1		