CCO '12 P2 - The Hungary Games

Time limit: 1.0s **Memory limit:** 1G

Canadian Computing Competition: 2012 Stage 2, Day 1, Problem 2

Welcome to the Hungary Games! The streets of Budapest form a twisted network of one-way streets. You have been forced to join a race as part of a "Reality TV" show where you race through these streets, starting at the *Szechenyi* thermal bath (*s* for short) and ending at the Tomb of *Gul Baba* (*t* for short).

Naturally, you want to complete the race as quickly as possible, because you will get more promotional contracts the better you perform. However, there is a catch: any person who is smart enough to take a shortest s-t route will be thrown into the Palvolgyi cave system and kept as a national treasure. You would like to avoid this fate, but still be as fast as possible. Write a program that computes a strictly-second-shortest s-t route.

Sometimes the strictly second-shortest route visits some nodes more than once; see Sample Input 2 for an example.

Input Specification

The first line will have the format N M, where N is the number of nodes in Budapest and M is the number of edges. The nodes are $1,2,\ldots,N$; node 1 represents s; node N represents t. Then there are M lines of the form A B L, indicating a one-way street from A to B of length L. You can assume that $A \neq B$ on these lines, and that the ordered pairs (A,B) are distinct.

Output Specification

Output the length of a strictly-second-shortest route from s to t. If there are less than two possible lengths for routes from s to t, output -1.

Limits

Every length L will be a positive integer between 1 and $10\,000$. For 50% of the test cases, we will have $2 \le N \le 40$ and $0 \le M \le 1000$. All test cases will have $2 \le N \le 20\,000$ and $0 \le M \le 100\,000$.

Sample Input 1

Output for Sample Input 1

11

Explanation for Sample Output 1

There are two shortest routes of length 10 (1 o 2 o 4, 1 o 3 o 4) and the strictly-second-shortest route is 1 o 2 o 3 o 4 with length 11.

Sample Input 2

2 2

1 2 1

2 1 1

Output for Sample Input 2

3

Explanation for Sample Output 2

The shortest route is $1 \to 2$ of length 1, and the strictly-second route is $1 \to 2 \to 1 \to 2$ of length 3.