Time limit: 3.0s **Memory limit:** 1G

Canadian Computing Competition: 2022 Stage 1, Senior #4

Andrew is a very curious student who drew a circle with the center at (0,0) and an integer circumference of $C \ge 3$. The location of a point on the circle is the counter-clockwise arc length from the right-most point of the circle.

Andrew drew $N \geq 3$ points at integer locations. In particular, the $i^{\rm th}$ point is drawn at location P_i ($0 \leq P_i \leq C-1$). It is possible for Andrew to draw multiple points at the same location.

A good triplet is defined as a triplet (a, b, c) that satisfies the following conditions:

- $1 \le a < b < c \le N$.
- The origin (0,0) lies strictly inside the triangle with vertices at P_{a_s} P_{b_t} and P_c . In particular, the origin is **not** on the triangle's perimeter.

Lastly, two triplets (a,b,c) and (a',b',c') are distinct if $a\neq a'$, $b\neq b'$, or $c\neq c'$.

Andrew, being a curious student, wants to know the number of distinct good triplets. Please help him determine this number.

Input Specification

The first line contains the integers N and C, separated by one space.

The second line contains N space-separated integers. The i^{th} integer is P_i ($0 \leq P_i \leq C-1$).

The following table shows how the available 15 marks are distributed.

Marks Awarded	Number of Points	Circumference	Additional Constraints
3 marks	$3 \leq N \leq 200$	$3 \leq C \leq 10^6$	None
3 marks	$3 \leq N \leq 10^6$	$3 \leq C \leq 6000$	None
6 marks	$3 \leq N \leq 10^6$	$3 \leq C \leq 10^6$	P_1, P_2, \dots, P_N are all distinct (i.e., every location contains at most one point)
3 marks	$3 \leq N \leq 10^6$	$3 \leq C \leq 10^6$	None

Output Specification

Output the number of distinct good triplets.

Sample Input

8 10 0 2 5 5 6 9 0 0

Output for Sample Input

6

Explanation of Output for Sample Input

Andrew drew the following diagram.

The origin lies strictly inside the triangle with vertices P_1 , P_2 , and P_5 , so (1,2,5) is a good triplet. The other five good triplets are (2,3,6), (2,4,6), (2,5,6), (2,5,7), and (2,5,8).