Time limit: 3.0s **Memory limit:** 1G #### Canadian Computing Competition: 2022 Stage 1, Senior #4 Andrew is a very curious student who drew a circle with the center at (0,0) and an integer circumference of $C \ge 3$. The location of a point on the circle is the counter-clockwise arc length from the right-most point of the circle. Andrew drew $N \geq 3$ points at integer locations. In particular, the $i^{\rm th}$ point is drawn at location P_i ($0 \leq P_i \leq C-1$). It is possible for Andrew to draw multiple points at the same location. A good triplet is defined as a triplet (a, b, c) that satisfies the following conditions: - $1 \le a < b < c \le N$. - The origin (0,0) lies strictly inside the triangle with vertices at P_{a_s} P_{b_t} and P_c . In particular, the origin is **not** on the triangle's perimeter. Lastly, two triplets (a,b,c) and (a',b',c') are distinct if $a\neq a'$, $b\neq b'$, or $c\neq c'$. Andrew, being a curious student, wants to know the number of distinct good triplets. Please help him determine this number. ## **Input Specification** The first line contains the integers N and C, separated by one space. The second line contains N space-separated integers. The i^{th} integer is P_i ($0 \leq P_i \leq C-1$). The following table shows how the available 15 marks are distributed. | Marks Awarded | Number of Points | Circumference | Additional Constraints | |---------------|----------------------|----------------------|---| | 3 marks | $3 \leq N \leq 200$ | $3 \leq C \leq 10^6$ | None | | 3 marks | $3 \leq N \leq 10^6$ | $3 \leq C \leq 6000$ | None | | 6 marks | $3 \leq N \leq 10^6$ | $3 \leq C \leq 10^6$ | P_1, P_2, \dots, P_N are all distinct (i.e., every location contains at most one point) | | 3 marks | $3 \leq N \leq 10^6$ | $3 \leq C \leq 10^6$ | None | ### **Output Specification** Output the number of distinct good triplets. ### **Sample Input** 8 10 0 2 5 5 6 9 0 0 # **Output for Sample Input** 6 ### **Explanation of Output for Sample Input** Andrew drew the following diagram. The origin lies strictly inside the triangle with vertices P_1 , P_2 , and P_5 , so (1,2,5) is a good triplet. The other five good triplets are (2,3,6), (2,4,6), (2,5,6), (2,5,7), and (2,5,8).