Time limit: 3.0s Memory limit: 1G

Canadian Computing Competition: 2021 Stage 1, Senior #5

Your math teacher has given you an assignment involving coming up with a sequence of N integers A_1, \ldots, A_N , such that $1 \leq A_i \leq 1\,000\,000\,000$ for each i.

The sequence A must also satisfy M requirements, with the $i^{\rm th}$ one stating that the GCD (Greatest Common Divisor) of the contiguous subsequence A_{X_i},\ldots,A_{Y_i} $(1\leq X_i\leq Y_i\leq N)$ must be equal to Z_i . Note that the GCD of a sequence of integers is the largest integer d such that all the numbers in the sequence are divisible by d.

Find any valid sequence A consistent with all of these requirements, or determine that no such sequence exists.

Input Specification

The first line contains two space-separated integers, N and M. The next M lines each contain three space-separated integers, X_{i} , Y_{i} , and Z_i $(1 \le i \le M)$.

The following table shows how the available 15 marks are distributed.

Subtask	N	M	Z_i
3marks	$1 \leq N \leq 2000$	$1 \leq M \leq 2000$	$1 \leq Z_i \leq 2$ for each i
4 marks	$1 \leq N \leq 2000$	$1 \leq M \leq 2000$	$1 \leq Z_i \leq 16$ for each i
8 marks	$1 \leq N \leq 150000$	$1 \leq M \leq 150000$	$1 \leq Z_i \leq 16$ for each i

Note: an additional test case worth 1 point was added to prevent unintended solutions from passing.

Output Specification

If no such sequence exists, output the string [Impossible] on one line. Otherwise, on one line, output N spaceseparated integers, forming the sequence A_1, \ldots, A_N . If there are multiple possible valid sequences, any valid sequence will be accepted.

Sample Input 1

2	2	
1	2	2
2	2	6

46

Explanation of Output for Sample Input 1

If $A_1 = 4$ and $A_2 = 6$, the GCD of $[A_1, A_2]$ is 2 and the GCD of $[A_2]$ is 6, as required. Please note that other outputs would also be accepted.

Sample Input 2

Output for Sample Input 2

Impossible

Explanation of Output for Sample Input 2

There exists no sequence $[A_1, A_2]$ such that the GCD of $[A_1, A_2]$ is 2 and the GCD of $[A_2]$ is 5.