The Cake is a Dessert

Time limit: 4.5s Memory limit: 1G

At the end of a tasty meal, Capba just wants some tasty dessert. Today, his cafeteria is serving a rectangular cake, with a coordinate system carved on its delicious graham cracker crust base. The cake can be thought of as a 2D grid of squares, with square (1, 1) at the bottom-left, and (N, M) at the top-right $(1 \le N, M \le 5000)$.

The cake also has K ($0 \le K \le 200\,000$) different icings on it, numbered from 1 to K, which have been applied in a strange fashion. Icing i covers all squares in the rectangle from (x_i, y_i) to (X_i, Y_i) ($1 \le x_i, X_i \le N, 1 \le y_i, Y_i \le M$), inclusive, with 1 cubic centimeter (1 cm^3) of icing each. If icings overlap, there will be squares with multiple layers of icing on them; for example, some of the squares in the sample input below are covered by 2 cm^3 of icing.

Capba likes icing... but then, he also doesn't like too much icing. He considers Q $(1 \le Q \le 200\,000)$ choices, numbered from 1 to Q, regarding which part of the cake to eat. Choice i involves cutting out and rapidly consuming the rectangle from (A_i, B_i) to (C_i, D_i) $(1 \le A_i \le C_i \le N, 1 \le B_i \le D_i \le M)$, inclusive.

To decide on the best choice, he first wants to know how much icing is present in each potential piece of cake.

Input Specification

Line 1: N, M, K. Next K lines: x_{i} , y_{i} , X_{i} , Y_{i} . Next line: Q. Next Q lines: A_{i} , B_{i} , C_{i} , D_{i} .

Output Specification

Q lines. Line *i* should contain the amount of icing present on the piece of cake described by choice *i*, in cm³.

Note: The answers may overflow 32-bit integers.

Sample Input

Sample Output

2			
0			
1			
3			
13			

Explanation for Sample Output

The cake has the following amounts of icing on it (in cm^3):

111100			
111100			
122100			
011000			
111111			

To answer the queries, just look at the diagram above and add up the numbers in each rectangle.