Editorial for Back To School '19: Chemistry
Submitting an official solution before solving the problem yourself is a bannable offence.
Author:
Subtask 1
For the first subtask, we can encode each beaker with a unique binary number from  to 
. For the 
 bit, we can easily determine if the encoding of the hydrogen cyanide beaker is a 
 or a 
 by pouring all of the beakers that have a 
 in the 
 bit into the cup. If the substance changes colours, then we know that the 
 bit of the hydrogen cyanide beaker is also a 
. Otherwise, it is a 
. If we repeat this for each bit, then we can determine the full binary encoding of the hydrogen cyanide beaker. Determining the formula for the number of bits for 
 beakers is an exercise for the reader.
Time Complexity: 
Subtask 2
For the second subtask, we can use the same process as subtask 1, except we have  minutes. We want to divide each of the required measurements into 
 minutes while minimizing the maximum number of cups used in any minute. It can be shown that if 
 is the number of cups required for 
 beakers in 
 minute, then the number of cups required for 
 minutes is 
.
Time Complexity: 
Be careful with precision if you decide to use floating point calculations.
Comments