Time limit: 1.0s Memory limit: 128M

To prepare for the upcoming school year, Richard has bought N books for his English class. Each book is assigned a value, a_{i} , Richard's willingness to read that book.

Richard wants to choose k of the N books and calculate his willingness to read those k books. The willingness to read those k books is the product of the willingness to read each individual book. For example, if he bought books of value a = [2, 5, 7, 9, 13], and he chose k = 3 books with indices 1, 2, 4, the willingness to read those books would be $a_1 \cdot a_2 \cdot a_4 = 2 \cdot 5 \cdot 9 = 90$.

Richard wants the *sum* of the willingness of all **distinct combinations** of k books for all values of k ($1 \le k \le N$).

However, since Richard does not like large numbers, he wants each sum modulo $998\,244\,353$.

Two combinations are considered **distinct** if the indices of the books chosen are different, **regardless of the values of the books**.

Input Specification

The first line of input will contain a single integer N ($1 \le N \le 2000$), the number of books that Richard bought.

The second line of input will contain N space-separated integers, the i^{th} integer representing a_i ($|a_i| \le 10^9$), the value of each book.

Output Specification

On one line, print N space-separated integers, the k^{th} integer representing the *sum* of the willingness of all **distinct** combinations of choosing k books, modulo 998 244 353.

We define A modulo B in the 2 equivalent ways:

- 1. Taking the remainder of $A \div B$, adding B if the result is negative.
- 2. Subtracting B from A, or adding B to A, until A is in the interval [0, B).

It may or may not help to know that $998\,244\,353 = 119\cdot 2^{23} + 1.$

Constraints

Subtask 1 [5%]

 $N \leq 10$

Subtask 2 [10%]

 $N \leq 20$

Subtask 3 [35%]

 $|a_i| \leq 10^3$

Subtask 4 [50%]

No additional constraints.

Sample Input 1

4 1 2 2 3

Sample Output 1

8 23 28 12

Explanation for Sample Output 1

N = 4, a = [1, 2, 2, 3].

There are 4 distinct combinations to read $1 \ {\rm book:}$

 $a_1=1$ $a_2=2$ $a_3=2$ $a_4=3$ Their sum is 8.

There are $\boldsymbol{6}$ distinct combinations to read $\boldsymbol{2}$ books.

 $a_1 \cdot a_2 = 1 \cdot 2 = 2$ $a_1 \cdot a_3 = 1 \cdot 2 = 2$ $a_1 \cdot a_4 = 1 \cdot 3 = 3$ $a_2 \cdot a_3 = 2 \cdot 2 = 4$ $a_2\cdot a_4=2\cdot 3=6$

 $a_3\cdot a_4=2\cdot 3=6$

Their sum is 23.

There are 4 distinct combinations of reading $3 \ {\rm books.}$

 $a_1 \cdot a_2 \cdot a_3 = 1 \cdot 2 \cdot 2 = 4$ $a_1 \cdot a_2 \cdot a_4 = 1 \cdot 2 \cdot 3 = 6$ $a_1 \cdot a_3 \cdot a_4 = 1 \cdot 2 \cdot 3 = 6$ $a_2 \cdot a_3 \cdot a_4 = 2 \cdot 2 \cdot 3 = 12$ Their sum is 28.

The only distinct combination of reading 4 books is $a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1 \cdot 2 \cdot 2 \cdot 3 = 12$.

Sample Input 2

3 -1 -1 -1

Sample Output 2

998244350 3 998244352