
Baltic OI '15 P2 - Editor

Baltic Olympiad in Informatics: 2015 Day 1, Problem 2

Byteasar is a programmer who works on a revolutionary text editor. In the editor there are two types of operations: one
type allows to edit text in the editor, and the other type allows to undo previously performed operations. One of the
innovative features of this editor is a multilevel undo operation. It works as follows. We say that a text editing operation
is an operation of level . An undo operation of level (for) undoes the last operation of level at most
which is not undone. For instance, an undo operation of level can undo only editing operations, and an undo
operation of level can undo editing operations as well as undo operations of level (but no undo operations of
greater levels).

More formally, each of the already performed operations can be in two states: active or undone. Let be one of the
operations. Just after performing the operation , it is in the state active. If is an undo operation of level , we find
the most recent operation in state active of level at most (denote it by) and change the state of the operation

 to undone. If is also an undo operation, we must change to active the state of the operation which had
undone (say). We continue in the same manner: whenever the state of an undo operation which had previously
undone some operation changes, we must also change the state of the operation (which, of course, may
result in changing states of further operations). The whole chain of state modifications finishes when an editing
operation is reached.

For simplicity, the current contents of text in the editor will be specified by a single integer , called the editor state
(equal to at the beginning). Each editing operation specifies the editor state that it produces. The editor state depends
on the last editing operation in the state active. Help Byteasar and write a program which keeps track of the editor
state.

Let us see this in action: the following table shows some operations performed by Byteasar and the editor state after
performing each of them. The symbol denotes an editing operation which changes the editor state to , whereas the
symbol denotes an undo operation of level .

Operation

Editor State

First, Byteasar performed three editing operations. The editor state changed from to , then to , and finally to .
Next, he performed two undo operations of level , which undid the operations and (changing their state to
undone). Thus the editor state was restored to . The following undo operation of level undid the last operation
(changing its state to undone), consequently restoring the operation (changing its state back to active). As a result
the editor state changed once again to . Operation undid the operation , operation once again undid the
restored operation , the last operation undid the operation , and the final operation is .

Input Specification

Time limit: 1.5s
Java: 3.0s

 Memory limit: 512M

0 i i = 1, 2, … i − 1

1

2 1

X

X X i

i − 1 X1

X1 X1 X1

X2 Xj

Xj+1 Xj+1

s

0

Es s

Ui i

E1 E2 E5 U1 U1 U3 E4 U2 U1 U1 E1

0 1 2 5 2 1 2 4 2 1 0 1

0 1 2 5

1 E5 E2

1 3 U1

E2

2 U2 E4 U1

E2 U1 E1 E1

The first line of the input contains a positive integer , specifying the number of operations performed by Byteasar. The
next lines contain descriptions of operations, one per line, each being an integer . If ,
then it specifies an editing operation which modifies the editor state to . If , then it specifies an undo operation
of level . You can assume that for every undo operation there will be some operation in the state active of smaller
level to undo.

Output Specification

Your program should output lines. The -th line should contain one integer specifying the editor state after
performing the first operations from the input.

Constraints

Subtask Conditions (in each test case) Points

1

2 and there are only operations and .

3 and only the last number in the sequence is graded (however, the first
numbers must be integers ranging from to).

4

Sample Input

11
1
2
5
-1
-1
-3
4
-2
-1
-1
1

Sample Output

n

n ai (−n ≤ ai ≤ n, ai ≠ 0) ai > 0

ai ai < 0

ai

n i

i

n ≤ 5000 20

n ≤ 300 000 Ei U1 15

n ≤ 300 000 n − 1

0 n

28

n ≤ 300 000 37

1
2
5
2
1
2
4
2
1
0
1

