
Page 1 of 2

Baltic OI '06 P5 - RLE Compression

RLE is a simple compression algorithm used to compress sequences containing subsequent repetitions of the same
character. By compressing a particular sequence, we obtain its code. The idea is to replace repetitions of a given
character (like aaaaa) with a counter saying how many repetitions there are. Namely, we represent it by a triple
containing a repetition mark, the repeating character and an integer representing the number of repetitions. For
example, aaaaa can be encoded as #a5 (where # represents the repetition mark).

We need to somehow represent the alphabet, the repetition mark, and the counter. Let the alphabet consist of
characters represented by integers from the set . The code of a sequence of characters from is
also a sequence of characters from . At any moment, the repetition mark is represented by a character from ,
denoted by . Initially is 0, but it may change during the coding. The code is interpreted as follows:

any character in the code, except the repetition mark, represents itself,
if the repetition mark occurs in the code, then the two following characters have special meaning:

if is followed by , then it represents repetitions of ,
otherwise, if is followed by (where), then will be the repetition mark from that point on,
otherwise, if is followed by (where and), then it represents repetitions of .

Using the above scheme, we can encode any sequence of characters from . For instance, for , the sequence
1002222223333303020000 can be encoded as 10010230320100302101 . First character of the code 1 means

simply 1 . Next 001 encodes 00 . Then, 023 represents 222222 , 032 represents 33333 , and 010

switches the repetition mark to 1 . Then 0302 represents itself and finally 101 encodes 0000 .

A sequence may be encoded in many ways and code length may vary. Given an already encoded sequence, your task is
to find a code with the least number of characters.

Write a program that:

Reads the size of the alphabet and the code of a sequence.
Finds the shortest code for that sequence.
Writes the result.

Input Specification

The first line contains one integer : the size of the alphabet. The second line contains one integer
 : the length of the code. The last line contains integers from the set

separated by single spaces, representing the code of a sequence.

Output Specification

The first line should contain one integer : the least number of characters in a code representing the given sequence.
The last line of the output should contain integers from the set separated by single spaces: the
code of the sequence. If there exist several shortest sequences, your program should output any one of them.

Time limit: 5.0s Memory limit: 64M

n

Σ = {0, 1, … , n − 1} Σ

Σ Σ

e e

a

e

e ek k + 1 e

e b0 b ≠ e b

e bk b ≠ e k > 0 k + 3 b

Σ n = 4

n (2 ≤ n ≤ 100 000)

m (1 ≤ m ≤ 2 000 000) m {0, 1, … , n − 1}

m
′

m
′ {0, 1, … , n − 1}

Page 2 of 2

Sample Input 1

4
20
1 0 0 1 0 2 3 0 3 2 0 1 0 0 3 0 2 1 0 1

Sample Output 1

19
1 0 1 0 0 0 1 2 3 1 3 2 0 3 0 2 1 0 1

Sample Input 2

14
15
10 10 10 0 10 0 10 10 13 10 10 13 10 10 13

Sample Output 2

9
0 10 13 0 10 13 0 10 10

