Time limit: 2.0s Memory limit: 256M

Soup has infiltrated Lakshy's top secret lab! Inside this lab are the secrets on how to survive the IB program. However, to get in Soup would need to bypass a sophisticated security lock. The security lock is an N by N matrix of cells. Soup has gained intel that the value of cell (i, j) (that is, the i^{th} row and j^{th} column) would be $(i - 1) \times N + j$ by default. To pass the lock, Soup will need to answer Q queries, the k^{th} asking for the value of a particular cell (y_k, x_k) . Unfortunately, Soup was also informed that the numbers on the grid have been scrambled in K successive rotation operations! In the k^{th} operation, Lakshy rotates the square with top left corner (t_k, l_k) and bottom right corner (b_k, r_k) by **90 degrees** clockwise. Overwhelmed by the difficulty, Soup cannot unlock the security lock, so he has come to you, his trusty accomplice, to help him!

Constraints

For all subtasks: $1 \le N \le 10^9$ $1 \le K, Q \le 5 imes 10^3$ $1 \le t_k \le b_k \le N$ $1 \le l_k \le r_k \le N$ $b_k - t_k = r_k - l_k$ $1 \le y_k, x_k \le N$ Subtask 1 [20%] $1 \le N \le 500$ $1 \le K \le 100$

Subtask 2 [80%]

No additional constraints.

Input Specification

The first line contains three integers, N, K, Q.

The next K lines each contain four integers, t_k, l_k, b_k, r_k .

The next Q lines each contain two integers, y_k, x_k .

Output Specification

For each of the Q queries, output on a separate line the value of cell (y_k, x_k) .

Sample Input

322			
1 1 3 3			
2 2 3 3			
3 2			
1 2			

Sample Output

3			
4			

Explanation

Before any rotations, the matrix looks like this:

123			
456			
789			

After the first rotation, the matrix looks like this:

After the second rotation, the matrix looks like this:

7 4 1 8 6 5 9 3 2

Thus the cell at (3,2) is 3 and the cell at (1,2) is 4.