Time limit: 1.0s **Memory limit:** 256M Java: 2.0s Python: 1.5s

You have N boxes with varying dimensions of w imes h (width by height).

You are trying to create the tallest tower possible by stacking any combination of these boxes. In order to keep your tower balanced, you can only stack a box on top of another if its width is **strictly less** than the one below it. Assuming you do not place any boxes next to each other, what is the height of the tallest possible tower you can create?

Constraints

- $1 \leq N, w \leq 10^6$
- $1 \leq h \leq 2\,000$

Input Specification

The first line of input contains an integer N.

The next N lines of input each contain 2 space-separated integers, w and h.

Output Specification

Output the height of the tallest possible tower.

The height of any given tower is the sum of the heights of its boxes.

Sample Input

3			
5 2			
5 3			
2 10			

Sample Output

Explanation for Sample

You can use the 5 imes 3 box as the base of the tower and stack the 2 imes 10 box on top of it.