Back From Summer '19 P4: Wesley And Cake

Time limit: 1.0s Memory limit: 64M

Everybody knows that cake comes in two shapes, circular or rectangular. Everybody except for Wesley.

In his defence:

You wouldn't buy a rectangular shaped pizza would you?

Thus Wesley has only ever cut his cake in one way.

- Imagine a Cartesian grid over the center of the cake labelled at (0,0).
- Make M cuts over the line formed by $y = m_i x$ within the cake's boundaries.

With Wesley's birthday coming up, his friends have decided to play a little prank on him. They have purchased a **square** shaped cake with side length <image>

A cake fit for a king ~**wleung_bvg**.

2N and would like to know the side length of the largest axis-aligned **square** obtainable that does not intersect with any cut. A square intersects a cut if there is a non-zero area of the square on both sides of the cut. This means that *touching* a cut does not count as an intersection.

Slope will be given as
$$a_i, b_i$$
 where $m_i = rac{a_i}{b_i}$.

Input Specification

The first line will contain two integers, N and M ($1 \le N \le 10^3$, $1 \le M \le 10^5$), half the length of the cake, and the number of cuts Wesley makes.

The next M lines will each contain two integers, a_i, b_i $(1 \le |a_i|, b_i \le 10^3)$, the numerator and denominator of the slope of the line used to determine the cut. a_i and b_i are guaranteed to be coprime, and the pair (a_i, b_i) is guaranteed to be unique.

Output Specification

Output two *positive* integers, n and d space-separated on one line. This means the side length of the largest obtainable axis-aligned square is $\frac{n}{d}$. Note that n and d must be coprime.

Constraints

Subtask 1 [30%]

 $M \leq 2$

Subtask 2 [70%]

No additional constraints.

Sample Input 1

1 2			
-1 1			
1 1			

Sample Output 1

23

Explanation For Sample 1

The following image shows the cake:

The red square is the cake, and the blue and green lines show the two cuts. The black line shows one of the many different largest squares obtainable.

Sample Input 2

22			
-1 2			
1 1			

32

Sample Input 3

Sample Output 3

2000000 2001