Time limit: 1.0s Memory limit: 256M

Marcus is a mathematician working at the University of Waterloo. Recently, he had been playing with triangles, and as he is a magnificent mathematician, he soon discovered a powerful formula to count right triangles under a certain hypotenuse. Are you able to keep up with Marcus?

More formally, given an integer hypotenuse h, Marcus would like you to count the number of non-degenerate triangles with integer legs and a hypotenuse (possibly non-integral) at most h. In this case, a triangle is defined as an ordered pair (a, b) (representing the lengths of its legs) such that $a, b \in \mathbb{Z}$ and $1 \le a, b$.

Lastly, to ensure the runtime and integrity of your solution, it will be run on T test cases.

Your solution will be accepted if it has a relative error of at most 10^{-3} . Relative error will be determined using the following formula:

If your answer is p and the correct answer is q, then your answer will be considered correct if

 $0.999q \leq p \leq 1.001q$

It is guaranteed that the output data has exactly the correct answer.

Constraints

For all subtasks:

 $T\in\{10,100\}$

 $1 \leq h \leq 10^9$

Subtask 1 [10%]

T=10

 $1 \leq h \leq 10$

Subtask 2 [10%]

T=10

 $1 \leq h \leq 1\,000$

Subtask 3 [20%]

T = 10

 $1 \leq h \leq 10^5$

Subtask 4 [60%]

T = 100

 $1 \leq h \leq 10^9$

Input Specification

The first line will contain T, the number of test cases.

The next T lines will each contain an integer, the value of h for that test case.

Output Specification

Output the answer to each test case on a separate line.

Note: while the correct answer is always an integer, the float checker is used to determine if your solution is correct, so outputting a floating-point value is OK.

Sample Input

10			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Sample Output

0	
1	
4	
8	
15	
22	
30	
41	
54	
69	

Explanation

Here are the answers for the first few test cases:

For h = 1, there are no triangles that satisfy the requirement.

For h = 2, the triangle that satisfies the requirement is (1, 1).

For h = 3, the triangles that satisfy the requirement are (1, 2), (2, 1), (2, 2), along with the one that satisfies h = 2.

For h = 4, the triangles that satisfy the requirement are (1, 3), (2, 3), (3, 1), (3, 2), along with the ones that satisfy h = 3.