
APIO '22 P2 - Game

After discovering planets, numbered from to , the Pharaohs have started to build a transportation system
between them by one-way teleporters. Each teleporter has a starting planet and an ending planet. When a tourist uses
a teleporter in the starting planet, the tourist is teleported to the ending planet. Note that the starting and ending
planet of a teleporter may be the same. A teleporter with its starting planet and ending planet is denoted by .

To encourage widespread use of the teleportation system, the Pharaohs have created a game that can be played by
tourists while travelling with the transportation system. A tourist can start the game from any planet. The planets

 () are called special planets. Every time a tourist enters a special planet, the tourist gets a stamp.

Currently, for each (), there is a teleporter . These teleporters are called starting
teleporters.

New teleporters are added one by one. As new teleporters are added, it may become possible for a tourist to get an
infinite number of stamps. To be precise, this happens when there is a sequence of planets
satisfying the following conditions:

For each (), there is a teleporter .

Note that a tourist can use starting teleporters and any teleporters that have been added so far.

Your task is to help the Pharaohs verify, after the addition of each teleporter, whether a tourist can get an infinite
number of stamps or not.

Implementation Details

You should implement the following procedures:

void init(int n, int k)

: the number of planets.
: the number of special planets.

This procedure is called exactly once, before any calls to add_teleporter .

int add_teleporter(int u, int v)

 and : the starting and the ending planet of the added teleporter.
This function is called at most times (for the value of , see Constraints).

Time limit: 2.0s Memory limit: 512M

n 0 n − 1

u v (u, v)

0, 1, … , k − 1 k ≤ n

i 0 ≤ i ≤ k − 2 (i, i + 1) k − 1

w[0], w[1], … , w[t]

1 ≤ t

0 ≤ w[0] ≤ k − 1

w[t] = w[0]

i 0 ≤ i ≤ t − 1 (w[i], w[i + 1])

n

k

u v

m m

This function should return if, after the teleporter is added, the tourist can get infinite number of stamps.
Otherwise, this function should return .
Once this function returns , your program will be terminated.

Examples

Example 1

Consider the following call:

init(6, 3)

In this example, there are planets and special planets. The planets , , and are special planets. The starting
teleporters are and .

Suppose that the grader calls:

1. add_teleporter(3, 4) : You should return .
2. add_teleporter(5, 0) : You should return .
3. add_teleporter(4, 5) : You should return .
4. add_teleporter(5, 3) : You should return .
5. add_teleporter(1, 4) : At this point, it is possible to get an infinite number of stamps. For example, the tourist

starts in the planet , goes to the planets in this order. Hence, you should return , and your
program will be terminated.

The following figure illustrates this example. The special planets and the starting teleporters are shown in bold.
Teleporters added by add_teleporter are labeled from through , in order.

Example 2

Consider the following call:

init(4, 2)

In this example, there are planets and special planets. The planets and are special planets. The starting teleporter
is .

1 (u, v)

0

1

6 3 0 1 2

(0, 1) (1, 2)

0

0

0

0

0 1, 4, 5, 0, 1, 4, 5, 0, … 1

0 4

4 2 0 1

(0, 1)

Suppose that the grader calls:

1. add_teleporter(1, 1) : after adding the teleporter , it is possible to get an infinite number of stamps. For
example, the tourist starts in the planet , and enters the planet infinitely many times using the teleporter .
Hence, you should return , and your program will be terminated.

Another sample input / output is available in the attachment package.

Constraints

For each call to the add_teleporter procedure:

 and
There is no teleporter from the planet to the planet before adding the teleporter .

Scoring

Subtask Score Constraints

, ,

,

,

, ,

No additional constraints

Sample Grader

The sample grader reads the input in the following format:

line :
line ():

The sample grader first calls init , and then add_teleporter for and for in
order.

It prints the index of the first call to add_teleporter which returns (which is between and , inclusive), or
if all calls to add_teleporter return .

If some call to add_teleporter returns an integer other than or , the sample grader prints and your program
is terminated immediately.

(1, 1)

1 1 (1, 1)

1

1 ≤ n ≤ 300 000

1 ≤ m ≤ 500 000

1 ≤ k ≤ n

0 ≤ u ≤ n − 1 0 ≤ v ≤ n − 1

u v (u, v)

1 2 n = k n ≤ 100 m ≤ 300

2 10 n ≤ 100 m ≤ 300

3 18 n ≤ 1 000 m ≤ 5 000

4 30 n ≤ 30 000 m ≤ 50 000 k ≤ 1 000

4 40

1 n m k

2 + i 0 ≤ i ≤ m − 1 u[i] v[i]

u = u[i] v = v[i] i = 0, 1, … , m − 1

1 0 m − 1 m

0

0 1 −1

https://github.com/apio2022/apio2022_tasks/tree/master/game/public/examples

