APIO '08 P3 - DNA

Time limit: 0.6s Memory limit: 128M

One interesting use of computers is to analyze biological data such as DNA sequences. Biologically, a strand of DNA is a chain of nucleotides Adenine, Cytosine, Guanine, and Thymine. The four nucleotides are represented by characters (A), (C), (G), and (T), respectively. Thus, a strand of DNA can be represented by a string of these four characters. We call such a string a DNA *sequence*.

It is possible that the biologists cannot determine some nucleotides in a DNA strand. In such a case, the character \mathbb{N} is used to represent an unknown nucleotide in the DNA sequence of the strand. In other words, \mathbb{N} is a wildcard character for any one character among \mathbb{A} , \mathbb{C} , \mathbb{G} or \mathbb{T} . We call a DNA sequence with one or more character \mathbb{N} an *incomplete sequence*; otherwise, it is called a *complete sequence*. A complete sequence is said to *agree with* an incomplete sequence if it is a result of substituting each \mathbb{N} in the incomplete sequence with one of the four nucleotides. For example, $\mathbb{A}CCT$ *agrees with* $\mathbb{A}CNNT$, but $\mathbb{A}GGAT$ does not.

Researchers often order the four nucleotides the way we order the English alphabets: A comes before C, C comes before G, G comes before T. A DNA sequence is classified as *form*-1 if every nucleotide in it is the same as or comes before the nucleotides immediately to its right. For example, [AACCGT] is form-1, but [AACGTC] is not.

In general, a sequence is *form-j*, for j > 1, if it is a form-(j - 1) or it is a concatenation of a form-(j - 1) sequence and a form-1 sequence. For example, AACCC, ACACC, and ACACA are form-3, but GCACAC and ACACACA are not.

Again, researchers order DNA sequences lexicographically the way we order words in a dictionary. As such, the first form-3 sequence of length 5 is AAAAA, and the last is TTTTT. As another example, consider the incomplete sequence (ACANNCNNG). The first seven form-3 sequences that agree with it are:

ACA<u>AACAAG</u> ACA<u>AACACG</u> ACA<u>AACAGG</u> ACA<u>AACCAG</u> ACA<u>AACCCG</u> ACA<u>AACCGG</u> ACAAACCTG

Task

Write a program to find the Rth form-K sequence that agrees with the given incomplete sequence of length M.

Input

The first line contains three integers separated by one space: M ($1 \le M \le 50\,000$), K ($1 \le K \le 10$), and R ($1 \le R \le 2 \times 10^{12}$). The second line contains a string of length M, which is the incomplete sequence. It is guaranteed that the number of form-K sequences that agree with the incomplete sequence is not greater than 4×10^{18} . Moreover, R does not exceed the number of form-K sequences that agree with the given incomplete sequence.

Output

On the first line, print the Rth form-K sequence that agrees with the incomplete sequence in the input.

Sample Input 1

9	3	5
ACANNCNNG		

Sample Output 1

ACAAACCCG

Sample Input 2

5 4 10 ACANN

Sample Output 2

ACAGC

Scoring

The score for each input scenario will be 100% if the correct answer is outputted and 0% otherwise.

In test scenarios worth $20\ {\rm points},\ M$ will be at most 10.